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Chapter 1
Probability

Probability theory provides a mathematical foundationieaepts such as “proba-
bility”, “information”, “belief”, “uncertainty”, “confidence”, “randomness”, “vari-
ability”, “chance” and “risk”. Probability theory is imptant to empirical sci-
entists because it gives them a rational framework to male@dnces and test
hypotheses based on uncertain empirical data. Probathiktyry is also useful
to engineers building systems that have to operate inggitlg in an uncertain
world. For example, some of the most successful approachesachine per-
ception (e.g., automatic speech recognition, computéonjiand artificial intel-
ligence are based on probabilistic models. Moreover pntibatheory is also
proving very valuable as a theoretical framework for s¢gtattrying to under-
stand how the brain works. Many computational neuros@esthink of the brain
as a probabilistic computer built with unreliable compasemne., neurons, and
use probability theory as a guiding framework to understdred principles of
computation used by the brain. Consider the following exasipl

e You need to decide whether a coin is loaded (i.e., whethenig to favor
one side over the other when tossed). You toss the coin 6 aimeésn all
cases you get “Tails”. Would you say that the coin is loaded?

e You are trying to figure out whether newborn babies can djsish green
from red. To do so you present two colored cards (one grees,read)
to 6 newborn babies. You make sure that the 2 cards have egewlllo
luminance so that they are indistinguishable if recorded black and white
camera. The 6 babies are randomly divided into two groups.fifét group
gets the red card on the left visual field, and the second gooupe right

7



8 CHAPTER 1. PROBABILITY

visual field. You find that all 6 babies look longer to the reddctnan the
green card. Would you say that babies can distinguish red fn@en?

e A pregnancy test has a 99 % validity (i.e., 99 of of 100 pregjmaomen test
positive) and 95 % specificity (i.e., 95 out of 100 non pregnvawmmen test
negative). A woman believes she has a 10 % chance of beinggredshe
takes the test and tests positive. How should she combingrioerbeliefs
with the results of the test?

e You need to design a system that detects a sinusoidal tor@0HL in the
presence of white noise. How should design the system te gbis task
optimally?

e How should the photo receptors in the human retina be interected to
maximize information transmission to the brain?

While these tasks appear different from each other, theyatiesa common prob-
lem: The need to combine different sources of uncertairrinéion to make ra-
tional decisions. Probability theory provides a very pdwienathematical frame-
work to do so. Before we go into mathematical aspects of piibtyatheory |
shall tell you that there are deep philosophical issuesngetiie very notion of
probability. In practice there are three major interpiieteg of probability, com-
monly called the frequentist, the Bayesian or subjectidast] the axiomatic or
mathematical interpretation.

1. Probability as a relative frequency

This approach interprets the probability of an event as tiopgtion of
times such ane event is expected to happen in the long rumahgy the
probability of an evenk would be the limit of the relative frequency of
occurrence of that event as the number of observations derges

P(E) = lim Z—E (1.1)
whereng is the number of times the event is observed out of a total of
n independent experiments. For example, we say that the Ipititjpaf
“heads” when tossing a coin is 0.5. By that we mean that if we #osoin
many many times and compute the relative frequency of “Head®xpect
for that relative frequency to approach 0.5 as we increasenttimber of
tosses.



This notion of probability is appealing because it seemgdahje and ties
our work to the observation of physical events. One difficultth the ap-

proach is that in practice we can never perform an experimenhfinite

number of times. Note also that this approach is behavjarighe sense
that it defines probability in terms of the observable betvaof physical

systems. The approach fails to capture the idea of probabdi internal
knowledge of cognitive systems.

. Probability as uncertain knowledge.

This notion of probability is at work when we say things likewfill proba-
bly get an A in this class”. By this we mean something like “Basedvhat
| know about myself and about this class, | would not be verpssed if |
get an A. However, | would not bet my life on it, since there araultitude
of factors which are difficult to predict and that could makaripossible
for me to get an A’. This notion of probability is “cognitivednd does not
need to be directly grounded on empirical frequencies. kamgple, | can
say things like “I will probably die poor” even though | willoh be able to
repeat my life many times and count the number of lives in Wihitie poor.

This notion of probability is very useful in the field of manRiintelligence.
In order for machines to operate in natural environmentg tieed knowl-
edge systems capable of handling the uncertainty of thedw8robability
theory provides an ideal way to do so. Probabilists that alleng/to rep-
resent internal knowledge using probability theory ardecatBayesian”,
since Bayes is recognized as the first mathematician to do so.

. Probability as a mathematical model. Modern mathematicians avoid the
frequentist vs. Bayesian controversy by treating prob@tak a mathemat-
ical object. The role of mathematics here is to make suregtidity theory

is rigorously defined and traceable to first principles. Fitbme point of
view it is up to the users of probability theory to apply it thvatever they
see fit. Some may want to apply it to describe limits of re&frequencies.
Some may want to apply it to describe subjective notions cktmainty, or
to build better computers. This is not necessarily of com¢erthe math-
ematician. The application of probability theory to thoseréins will be
ultimately judged by its usefulness.



10 CHAPTER 1. PROBABILITY

1.1 Intuitive Set Theory

We need a few notions from set theory before we jump into fdritibatheory.
In doing so we will use intuitive or “naive” definitions. Thistuitive approach
provides good mnemonics and is sufficient for our purposésdon runs into
problems for more advanced applications. For a more rigoo&dinition of set
theoretical concepts and an explanation of the limitatadribe intuitive approach
you may want to take a look at the Appendix.

e Set A setis a collection of elements. Sets are commonly reptedaising
curly brackets containing a collection of elements separély commas.
For example

A=1{1,2,3) (1.2)

tells us that4 is a set whose elements are the first 3 natural numbers. Sets

can also be represented using a rule that identifies the eteroéthe set.
The prototypical notation is as follows

{z : x follows a rulg (1.3)
For example,

{z : x is a natural number andis smaller than 4 (1.4)

e Outcome Space The outcome space is a set whose elements are all the
possible basic outcomes of an experimefihe sample space is also called
sample spacereference set anduniversal setand it is commonly repre-
sented with the capital Greek letter “omegQ”,We call the elements of the
sample space “outcomes” and represent them symbolically tiwve small
Greek letter “omega’y.

Example 1: If we roll a die, the outcome space could be
Q={1,2,3,4,5,6} (1.5)

In this case the symbal could be used to represent either 1,2,3,4,5 or 6.

1The empty set is not a valid sample space.
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Example 2: If we toss a coin twice, we can observe 1 of 4 outcomes:
(Heads, Heads), (Heads, Tails), (Tails, Heads), (Tailés)Tadn this case we
could use the following outcome space

Q= {(H,H),(H,T),(T, H),(T.T)} (1.6)

and the symbol could be used to represent eithiéf, H), or (H,T), or

(T, H), or (T, T). Note how in this case each basic outcome contains 2
elements. If we toss a cointimes each basic outcomewould containn
elements.

e Singletons: A singleton is a set with a single element. For example the set
{4} is a singleton, since it only has one element. On the othed hignot
a singleton since it is an element not a%et.

e Element inclusion: We use the symbot to represent element inclusion.
The expressiow € A tells us thatw is an element of the set. The
expressionw ¢ A tells us thatv is not an element of the set. For example,

1 € {1,2} is true sincel is an element of the sdtl,2}. The expression
{1} € {{1},2} is also true since the singletdi} is an element of the set
{{1},2}. The expressiokl} ¢ {1,2} is also true, since the sét} is not
an element of the sé€tl, 2}.

e Setinclusion: We say that the set is included in the seB or is asubsetof
B if all the elements ofd are also elements df. We represent set inclusion
with the symbolC. The expressioml C B tells us that bottd and B are
sets and that all the elements.éfare also elements d¥. For example the
expressionf 1} C {1,2} is true since all the elements of the &t are in
the sef{1,2}. On the other hand C {1, 2} is not true sincé is an element,
not a sef

e Set equality: Two setsA and B are equal if all elements of belong toB
and all elements oB3 belong toA. In other words, ifA C B andB C A.
For example the sefd, 2,3} and{3, 1, 1,2, 1} are equal.

e Set Operations: There are 3 basic set operations:

2The distinction between elements and sets does not existiomatic set theory, but it is
useful when explaining set theory in an intuitive manner.
3For a more rigorous explanation see the Appendix on axiansatitheory.
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1. Union: The union of two sets! and B is another set that includes all
elements ofd and all elements of8. We represent the union operator
with this symbolJ
For example, ifA = {1,3,5} and B = {2,3,4}, thenAU B =
{1,2,3,4,5}. More generally

AUB={w:we Aorwe B} (1.7)

In other words, the set U B is the set of elements with the property
that they either belong to the sétor to the sets.

2. Intersection: The intersection of two setd and B is another set’
such that all elements i’ belong toA and toB. The intersection
operator is symbolized as. If A = {1,3,5} andB = {2, 3,4} then
AN B = {3}. More generally

ANB={w:we Aandw € B} (1.8)

3. Complementation The complement of a set with respect to a ref-
erence sef) is the set of all elements 6t which do not belong tol.
The complement ofl is represented a4°. For example, if the univer-
sal setis{1,2,3,4,5,6} then the complement dfl, 3,5} is {2,4,6}.
More generally

A°={w:weQandw ¢ A} 1.9

e Empty set The empty set is a set with no elements. We represent the null
set with the symbop. NoteQ = @, @¢ = (), and for any sefl

AUug = A (1.10)
ANo =0 (1.11)

¢ Disjoint sets Two sets are disjoint if they have no elements in common,
i.e., their intersection is the empty set. For example, étg{d, 2} and{1}
are not disjoint since they have an element in common.

e Collections A collection of sets is a set of sets, i.e., a set whose el&anen
are sets. For example, if and B are the sets defined above, the{sét B}
is a collection of sets.
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e Power set The power set of a set is the a collection of all possible sets
of A. We represent it a8 (A). For example, ifA = {1, 2,3} then

P(A) = {a, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A} (1.12)

Note thatl is not an element of3(A) but {1} is. This is because is an
element of4, not a set ofA.

e Collections closed under set operationsA collection of sets is closed
under set operations if any set operation on the sets in tflection results
in another set which still is in the collection. ¥ = {1,3,5} andB =
{2, 3,4}, the collectiorC = {A, B} is not closed because the seh B =
{3} does not belong to the collection. The collectn- {2, &} is closed
under set operations, all set operations on elemeritpodduce another set
that belongs t@. The power set of a set is always a closed collection.

e Sigma algebra A sigma algebra is a collection of sets which is closed when
set operations are applied to its members a countable nurhbieres. The
power set of a set is always a sigma algebra.

e Natural numbers: We use the symba\ to represent the natural numbers,
ie., {1,2,3,...}. One important property of the natural numbers is that if
x € Nthenz +1 € N.

e Integers: We use the symbdL to represent the set of integers, i.g., .,
-3,-2,—-1,0,1,2,3,...}. NoteN C Z. One important property of the
natural numbers is thatif € Zthenz+ 1€ Zandz —1 € Z .

e Real numbers We use the symbdR to represent the real numbers, i.e.,
numbers that may have an infinite number of decimals. For pigm,
2.35, —4/123, v/2, andr, are real numbers. Noté C Z C R.

e Cardinality of sets:
— We say that a set fnite if it can be put in one-to-one correspondence

with a set of the forn{1,2,...,n}, wheren is a fixed natural number.

— We say that a set imfinite countable if it can be put in one-to-one
correspondence with the natural numbers.

— We say that a set isountableif it is either finite or infinite countable.
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— We say that a set isifinite uncountable if it has a subset that can be
put in one-to-one correspondence with the natural numbatshe set
itself cannot be put in such a correspondence. This incladissthat
can be put in one-to-one correspondence with the real nianber

1.2 Events

We have defined outcomes as the elements of a referen€ke datpractice we
are interested in assigning probability values not only wecomes but also to
sets of outcomes. For example we may want to know the pratyabflgetting

an even number when rolling a die. In other words, we want tohéability of

the set{2,4,6}. In probability theory set of outcomes to which we can assign
probabilities are callegvents The collection of all events is called tlevent
spaceand is commonly represented with the letfr Not all collections of sets
gualify as event spaces. To be an event space, the collexftioets has to be a
sigma algebra (i.e., it has to be closed under set operatibiese is an example:

Example: Consider the sample spafe= {1,2,3,4,5,6}. Is the collection of
sets{{1,2,3},{4,5,6}} a valid event space?

Answer: No, it is not a valid event space because the unioqlo2,3} and
{4,5,6} isthe sef) = {1, 2, 3,4, 5,6} which does not belong t&. On the other
hand the se{o, {1,2,3},{4,5,6},Q} is a valid event space. Any set operation
using the sets itF results into another set which is jf.

Note: The outcome space and the event spacg are different sets. For ex-

ample if the outcome space wefe = {H,T} a valid event space would be

F = {Q,2,{H},{T}}. Note that? # F. The outcome space contains the
basic outcomes of an experiments. The event space con&sgfutcomes.

1.3 Probability measures

When we say that the probability of rolling an even number s @e can think
of this as an assignment of a number (i.e., 0.5) to a settp.ehe set{2,4,6}.
Mathematicians think of probabilities as function that ‘asares” sets, thus the
nameprobability measure. For example, if the probability of rolling an even
number on a die is 0.5, we would say that the probability mesasi the set



1.3. PROBABILITY MEASURES 15

{2,4,6} is 0.5. Probability measures are commonly represented tivHetter
P (capitalized). Probability measures have to follow thremestraints, which are
known as Kolmogorov’s axioms:

1. The probability measure of events has to be larger or equairo: P(A) >
0forall A e F.

2. The probability measure of the reference setis 1

P(Q) =1 (1.13)

3. Ifthe setsA,, A,, ... € F are disjoint then
P(AJUAyU---)=P(A)+ P(Ay) +--- (1.14)

Example 1: A fair coin. We can construct a probability space to describe
the behavior of a coin. The outcome space consists of 2 eklsmespresent-
ing heads and tail§? = {H,T'}. Since(! is finite, we can use as the event
space the set of all sets {n, also known as the power set 9f In our case,

F ={{H},{T},{H,T},2}. NoteF is closed under set operations so we can
use it as an event space.

The probability measuré in this case is totally defined if we simply say
P({H}) = 0.5. The outcome oP for all the other elements of can be inferred:
we already knowP({H}) = 0.5 and P({H,T}) = 1.0. Note the set§ H} and
{T'} are disjoint, moreove{H } U {T'} = (2, thus using the probability axioms

P{H,T})=1=P{H})+P{T}) =05+ P({T}) (1.15)

from which it follows P({T'}) = 0.5. Finally we note thaf) and2 are disjoint
and their union i$2, using the probability axioms it follows that

1=P(Q)=P(QUZ)=P(Q)+ P(2) (1.16)

Thus P(2) = 0. Note P qualifies as a probability measure: for each element of
F it assigns a real number and the assignment is consistdntivétthree axiom
of probability.

Example 2: A fair die. In this case the outcome spacéls= {1,2,3,4,5,6},
the event space is the power set(pfthe set of all sets of?, 7 = PB(2), and
P({i}) = 1/6, for i = 1,...,6. | will refer to this as the fair die probability
space.
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Example 3: A loaded die. We can model the behavior of a loaded die by as-
signing non negative weight values to each side of the di¢.ul.eepresent the
weight of sidei. In this case the outcome spacélis-= {1, 2, 3,4, 5,6}, the event
space is the power set 0f the set of all sets d, F = (Q2), and

P{i}) = wi/ (w1 + - - 4+ wg), (1.17)

Note that if all weight values are equal, this probabilityasp is the same as the
probability space in Example 2.

1.4 Joint Probabilities

The joint probability of two or more events is the probapibf the intersection of
those events. For example consider the events- {2,4,6}, A, = {4,5,6} in

the fair die probability space. Thud; represents obtaining an even number and
A, obtaining a number larger than 3.

P(A1) = P({2} u {4} u{6}) =3/6 (1.18)
P(As) = P({4} U {5} U {6}) =3/6 (1.19)
P(A; N Ay) = P({4} U {6}) = 2/6 (1.20)

Thus the joint probability ofd; and A, is 1/3.

1.5 Conditional Probabilities

The conditional probability of evemt; given event4, is defined as follows

Pl | Ag) = D)

(1.21)
Mathematically this formula amounts to makidg the new reference set, i.e., the
setA, is now given probability 1 since

P(A; N A,

P(A2 ’ A2> = P(AQ)

=1 (1.22)
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Intuitively, Conditional probability represents a revisiof the original probability
measureP. This revision takes into consideration the fact that wevktize event
A, has happened with probability 1. In the fair die example,

P(A) | 43) = % -3 (1.23)

in other words, if we know that the toss produced a numbeelatigan 3, the
probability that the number is even is 2/3.

1.6 Independence of 2 Events

The notion of independence is crucial. Intuitively two etgef; and A, are inde-
pendent if knowing thatl, has happened does not change the probability;of
In other words

P(A; ] Ay) = P(A4y) (1.24)
More generally we say that the eventsand A, are independent if and only if
P(A1 N Az) = P(A1)P(Ay) (1.25)

In the fair die exampleP (4, | A;) = 1/3 andP(A,) = 1/2, thus the two events
are not independent.

1.7 Independence of n Events

We say that the eventsd,, ..., A, are independent if and only if the following
conditions are met:

1. All pairs of events with different indexes are indeperigee.,
P(A;NA;) = P(A)P(4A)) (1.26)
foralli,j € {1,2,...,n} such that # j.
2. For all triplets of events with different indexes
P(A;NA;jNA) = P(A;)P(A;)P(Ag) (1.27)
foralli,j,k € {1,...,n} suchthat # j # k.
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3. Same idea for combinations of 3 sets, 4 sets,

4. For the n-tuple of events with different indexes

P(AiNA;N--NA) = P(A)P(Ay)---P(4,)  (1.28)

You may want to verify tha™ — n — 1 conditions are needed to check whether
n events are independent. For example- 3 — 1 = 4 conditions are needed to
verify whether 3 events are independent.

Example 1: Consider the fair-die probability space anddgt= A, = {1, 2, 3},
andA; = {3,4,5,6}. Note

P(A1 N Ay N Ag) = P({3}) = P(A1)P(A3) P(As) = 1/6 (1.29)
However
P(A;NAy) =3/6 # P(A;)P(As) =9/36 (2.30)
ThusA;, A,, Az are not independent.
Example 2: Consider a probability space that models the behavior a wezgh

die with 8 sidesf) = (1,2,3,4,5,6,7,8), F = P(2) and the die is weighted so
that

P({2}) = P({3}) = P({5}) = P({8}) = 1/4 (1.31)
P({1}) = P({4}) = P({6}) = P({7T}) =0 (1.32)
Let the eventsd, A,, A3 be as follows

Ay ={1,2,3,4} (1.33)
Ay ={1,2,5,6} (1.34)
As =1{1,3,5,7} (1.35)

ThUSP(Al) = P(AQ) = P(Ag) = 2/4 Note
P(A1NAy) = P(A)P(Ay) =1/4 (1.36)
P(Ay N A3) = P(A))P(As) =1/4 (1.38)
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Thus A; and A, are independent4d; and A3 are independent and, and A; are
independent. However

P(Ay N Ay N Ay) = P({1}) = 0 # P(A)P(A)P(A;) = 1/8  (1.39)

ThusA,, A,, Az are not independent even thoudhand A, are independent4,
and A; are independent and, and A3 are independent.

1.8 The Chain Rule of Probability

Let{A;, Ay, ..., A,} be acollection of events. The chain rule of probabilitygell
us a useful way to compute the joint probability of the entioélection

P(A)P(Ay | A)P(As | Ay N As) -+ P(Ap | Ay N AN+ N Apy)
(1.40)

Proof: Simply expand the conditional probabilities and note how dienomi-
nator of the termP(A;, | A; N --- N Ax_;) cancels the numerator of the previous
conditional probability, i.e.,

P(A1)P(Az [ A P(As | AiNAg) -+ P(A, | AN NA, ) = (1.41)
P(A )P(AmAl)P(AgmAmAl)  P(AiNn---NAY)
YP(4y) P(A; N Ay) P(AiN--NA,_4)
(1.42)
= P(A1N---NA,) (1.43)

Example: A car company has 3 factories. 10% of the cars are produced in
factory 1, 50% in factory 2 and the rest in factory 3. One ol2@tars produced

by the first factory are defective. 99% of the defective cacglpced by the first
factory are returned back to the manufacturer. What is thbahitity that a car
produced by this company is manufactured in the first facisrgiefective and is

not returned back to the manufacturer.

Let A, represent the set of cars produced by factongslthe set of defective cars
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andA; the set of cars not returned. We know

P(A)) =0.1 (1.44)
P(Ay| Ay) =1/20 (1.45)
P(A3] A;NAy)=1-99/100 (1.46)
Thus, using the chain rule of probability
(0.1)(0.05)(0.01) = 0.00005 (1.48)

1.9 The Law of Total Probability

Let {H,, H,, ...} be a countable collection of sets which is a partitiorf2ofIn
other words

H UH,U---=Q. (1.50)

In some cases it is convenient to compute the probabilitynaheentD using the
following formula,

P(D)=PH, ND)+ P(H,ND)+--- (1.51)
This formula is commonly known as the law of total probapi(itTP)

Proof:  First convince yourself thatH, N D, H, N D, ...} is a partition ofD,
ie.,

(H1ND)U(H,ND)U---=D. (1.53)

Thus
P(D)=P((HHND)U(H;ND)U---) = (1.54)
P(HiND)+ P(H,ND)+--- (1.55)

We can do the last step because the partition is countable.
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Example: A disease called pluremia affects 1 percent of the populafidere
is a test to detect pluremia but it is not perfect. For peopth pluremia, the test
is positive 90% of the time. For people without pluremia thst is positive 20%
of the time. Suppose a randomly selected person takes theniest is positive.
What are the chances that a randomly selected person tegtegios

Let D represent a positive test resuli; not having pluremia,H, having
pluremia. We knowP(H,) = 0.99, P(H,) = 0.01. The test specifications tell us:
P(D | Hy)=0.2andP(D | Hy) = 0.9. Applying the LTP

P(D)=P(DnNH,)+ P(D N Hy) (1.56)
= P(H1)P(D | Hi) + P(H2)P(D | H») (1.57)
— (0.99)(0.2) + (0.01)(0.9) = 0.207 (1.58)

1.10 Bayes’' Theorem

This theorem, which is attributed to Bayes (1744-1809)sta#i how to revise
probability of events in light of new data. It is important point out that this
theorem is consistent with probability theory and it is gated by frequentists
and Bayesian probabilists. There is disagreement howegardmg whether the
theorem should be applied to subjective notions of proliegsi(the Bayesian ap-
proach) or whether it should only be applied to frequentisioms (the frequentist
approach).
Let D € F be an event with non-zero probability, which we will name t Le

{H,, H,, ...} be a countable collection of disjoint events, i.e,

HiNH;=aifi#j (1.60)

We will refer to H,, H,, ... as “hypotheses”, an@d as “data”. Bayes’ theorem
says that

P(D | H;)P(H,)
(D | Hy)P(Hy) + P(D| Ho) P(Ha) + - -

P(H;| D) = 3 (1.61)

where

e P(H;) is known as the prior probability of the hypothegis. It evaluates
the chances of a hypothesis prior to the collection of data.



22 CHAPTER 1. PROBABILITY

e P(H;| D) is known as the posterior probability of the hypotheSjgyiven
the data.

e P(D|H,),P(D | H,),...are known as the likelihoods.
Proof: Using the definition of conditional probability

P(H; N D)

P(H;| D) = 0) (1.62)

Moreover, by the law of total probability
P(D)=P(DNH)+P(DNHy) +--- = (1.63)
P(D | Hy)P(H,)+ P(D | Hy)P(Hs) +--- (1.64)
t

Example: A disease called pluremia affects 1 percent of the populafldnere

is a test to detect pluremia but it is not perfect. For peopth pluremia, the test
Is positive 90% of the time. For people without pluremia thst is positive 20%
of the time. Suppose a randomly selected person takes thaen@s is positive.

What are the chances that this person has pluremia?:

Let D represent a positive test resuli; not having pluremia,H, having
pluremia. Prior to the the probabilities &f, and H, are as follows:P(H;) =
0.01, P(H;) = 0.99. The test specifications give us the following likelihoods:
P(D | Hy) =0.9andP(D | H,) = 0.2. Applying Bayes’ theorem

(0.9)(0.01)

(0.9)(0.01) + (0.2)(0.99)

Knowing that the test is positive increases the chancesvan@gluremia from 1
in a hundred to 4.3 in a hundred.

P(H,| D) = = 0.043 (1.65)

1.11 Exercises

1. Briefly describe in your own words the difference betweenftequentist,
Bayesian and mathematical notions of probability.
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Go to the web and find more about the history of 2 probabihgorists
mentioned in this chapter.

Using diagrams, convince yourself of the rationality & Morgan’s law:

(AUB)° = A°N B (1.66)

Try to prove analytically De Morgan’s law.

Urn A has 3 black balls and 6 white balls. Urn B has 400 blaalkskand
400 white balls. Urn C has 6 black balls and 3 white balls. Asperfirst
randomly chooses one of the urns and then grabs a ball ragdoom the
chosen urn. What is the probability that the ball be black? [pfeason
grabbed a black ball. What is the probability that the ball edrom urn B?

. The probability of catching Lyme disease after on day kifig in the Cuya-

maca mountains are estimated at less than 1 in 10000. Yobddedfter a
day of hike in the Cuyamacas and decide to take a Lyme disestseltee

test is positive. The test specifications say that in an éxyert with 1000

patients with Lyme disease, 990 tested positive. Mored¥ren the same
test was performed with 1000 patients without Lyme dise266, tested
positive. What are the chances that you got Lyme disease.

. This problem uses Bayes’ theorem to combine probabil#gesubjective

beliefs with probabilities as relative frequencies. Afideof yours believes
she has a 50% chance of being pregnant. She decides to taggreapcy
test and the test is positive. You read in the test instrostitnat out of
100 non-pregnant women, 20% give false positives. Moreagrof 100

pregnant women 10% give false negatives. Help your frierglrage her
beliefs.

. In a communication channel a zero or a one is transmittbd.pfobability

that a zero is transmitted is 0.1. Due to noise in the cha@anstro can be
received as one with probability 0.01, and a one can be redeig a zero
with probability 0.05. If you receive a zero, what is the pmblity that a

zero was transmitted? If you receive a one what is the préhatbiat a one

was transmitted?

. Consider a probability spa¢e, F, P). Let A and B be sets ofF, i.e., both

A andB are sets whose elements belongtoDefine the set operatdr"
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10.

11.

12.

13.

14.
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as follows
A—B=ANDBe (1.67)
Show thatP(A — B) = P(A) — P(AN B)

Consider a probability space whose sample sfaisehe natural numbers

(i.e., 1,2,3,..). Show that not all the natural numbers can have equal prob-

ability.

Prove that any event is independent of the universalttévamd of the null
eventa.

Suppose is an elementary outcome, i.e..c€ €2. What is the difference be-
tweenw and{w}?. How many elements doeshave?. How many elements
does{o} have?

You are a contestant on a television game show. Beforengahie closed
doors. One of them hides a car, which you want to win; the dikerhide
goats (which you do not want to win).

First you pick a door. The door you pick does not get openedediately.

Instead, the host opens one of the other doors to reveal aldeatill then

give you a chance to change your mind: you can switch and pelother
closed door instead, or stay with your original choice. Tkenthings more
concrete without losing generality concentrate on theoWaihg situation

(a) You have chosen the first door.
(b) The host opens the third door, showing a goat.
If you dont switch doors, what is the probability of winingetbar? If you

switch doors, what is the probability of wining the car? Skotou switch
doors?

Linda is 31 years old, single, outspoken and very brig@ite majored in
philosophy. As a student she was deeply concerned withgssugiscrim-
ination and social justice, and also participated in antiteéar demonstra-
tions. Which is more probable?

() Lindais a bank teller?
(b) Linda is a bank teller who is active in the feminist movertye



Chapter 2

Random variables

Up to now we have studied probabilities of sets of outcomepractice, in many
experiment we care about some numerical property of thetseimes. For exam-
ple, if we sample a person from a particular population, wg mant to measure
her age, height, the time it takes her to solve a problem, ld&ze is where the
concept of a random variable comes at hand. Intuitively, arethink of a random
variable (rav) as a numerical measurement of outcomes. ptersely, a random
variable is a rule (i.e., a function) that associates nusibeputcomes. In order
to define the concept of random variable, we first need to sew a@hfings about
functions.

Functions: Intuitively a function is a rule that associates membersvof sets.
The first set is called thelomain and the second set is called therget or
codomain This rule has to be such that an element of the domain shantld n
be associated to more than one element of the codomain.iéuseire described
using the following notation

fiA-B (2.1)

where f is the symbol identifying the functiond is the domain and3 is the
target. For examplé, : R — R tells us that is a function whose inputs are real
numbers and whose outputs are also real numbers. The fon¢tio = (2)(z)+4
would satisfy that description. Random variablesfaretions whose domain is
the outcome space and whose codomain is the real numbersadiice we can
think of them as numerical measurements of outcomes. The topa random
variable is an elementary outcome and the output is a number.

25
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Example: Consider the experiment of tossing a fair coin twice. In tlaisecthe
outcome space is as follows:

O = {(H,H),(H,T),(T,H),(T,T)}. (2.2)

One possible way to assign numbers to these outcomes is t tteeinumber
of heads in the outcome. | will name such a function with thealsgl X, thus
X:Q—Rand
0 ifw=(T\T)
Xw)=<1 ifw=(T,H)orw=(H,T) (2.3)
2 ifw=(H,H)
In many cases it is useful to define set<blising the outcomes of the random

variableX. For example the sétv : X (w) < 1} is the set of outcomes for which
X associates a number smaller or equadll.tth other words

{w : X(w) < 1} = {(T> T)7 (T’ H)’ (H7 T)} (2.4)

Another possible random variable for this experiment magnsuee whether the
first element of an outcome is “heads”. | will denote this ramdsariable with the
letterY;. ThusY; : Q — R and

)0 ifw=(TT)orw= (T, H)
Yl(”)_{1 if w = (H, H) orw = (H,T) (2:5)

Yet another random variable, which | will nanig may tell us whether the second
element of an outcome is heads.

o [0 fw=(TT)orw = (H,T) (2.6)
2(”)_ 1 ifw:(H’H)OI’WZ(T7H) |

We can also describe relationships between random vasiaBler example, for
all outcomesv in 2 it is true that

X(w) = Yi(w) + Y2 () (2.7)
This relationship is represented succinctly as

X=Y+Y (2.8)
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Example: Consider an experiment in which we select a sample of 100 stu-
dents from UCSD using simple random sampling (i.e., all thdestts have equal
chance of being selected and the selection of each studeegshdt constrain the
selection of the rest of the students). In this case the sasyace is the set of
all possible samples of 100 students. In other words, eatdome is a sample
that contains 100 studentsA possible random variable for this experiment is the
height of the first student in an outcome (remember each mée®a sample with
100 students). We will refer to this random variable with siyenbol /#,. Note
given an outcome of the experiment, (i.e., a sample of 10@esiis) 7/, would
assign a number to that outcome. Another random variablénferexperiment

is the height of the second student in an outcome. | will da tandom vari-
able H,. More generally we may define the random varialdlgs. . . , H,oo where

H; : Q — R such thatt;(w) is the height of the subject numbiin the samplev.
The average height of that sample would also be a randomblayiahich could
be symbolized a#/ and defined as follows

- 1
H(w) = 156 (Hi(w) +-+ Hygo(w)) forallw € Q (2.9)
or more succinctly
1
= m(Hl‘i‘“"i‘HlOO) (2.10)

| want you to remember that all theeendom variables are not numbers they
are functions (rules) that assign numbers to outcomes. Uitpibof these func-
tions may change with the outcome, thus the name randonblevria

Definition A random variableX on a probability spacé&?, F, P) is a function
X : 2 — R. The domain of the function is the outcome space and thettarge
the real numbers.

Notation: By convention random variables are represented with cdpitals.
For exampleX :  — R, tells us thatX is a random variable. Specific values of a
random variable are represented with small letters. Famel@ X (w) = u tells

1The number of possible outcomesnis/ (100! (n — 100)!) wheren is the number of students
at UCSD.

2Strictly speaking the function has to be Borel measural@e @&ppendix), in practice the
functions of interest to empirical scientists are Borel mugable so for the purposes of this book
we will not worry about this condition.
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us that the “measurement” assigned to the outconbg the random variabl&
is u. Also | will represents sets like

{w: X(w) =u} (2.11)

with the simplified notation
{X =u} (2.12)

| will also denote probabilities of such sets in a simplifigdt misleading, way.
For example, the simplified notation

P(X =u) (2.13)
or
PH{X =u}) (2.14)
will stand for
P{w: X(w) =u}) (2.15)

Note the simplified notation is a bit misleading since forrapée X cannot pos-
sibly equalu since the first is a function and the second is a number.

Definitions:

e A random variableX is discreteif there is a countable set or real numbers
{1'1, Za, .. } such thatP(X S {Zlfl,l'g, .. }) =1

e Arandom variableX is continuousif for all real numbers: the probability

that X takes that value is zero. More formally, for alle R, P(X = u) =
0.

e A random variableX is mixed if it is not continuous and it is not discrete.

2.1 Probability mass functions.

A probability mass function is a functigny : R — [0, 1] such that

px(u) = P(X =u) forallu € R. (2.16)
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Note: If the random variable is continuous, ther(u) = 0 for all values ofu.
Thus,

0 if X is continuous
> px(w) =41 if X is discrete (2.17)
u€R neitherQ nor1 if X is mixed

where the sum is done over the entire set of real numbers. VeéhHaws are
some important examples of discrete random variables aidgiobability mass
functions.

Discrete Uniform Random Variable: A random variableX is discrete uniform

is there is a finite set of real numbedrs, . . ., =, } such that
1/n ifue{r,... 6z,
pxluy = M to J (2.18)
0 else

For example a uniform random variable that assigns praibabib to the numbers
{1,2,3,4,5,6} and zero to all the other numbers could be used to model the
behavior of fair dies.

Bernoulli Random Variable: Perhaps the simplest random variable is the so
calledBernoulli random variable, with parametgre [0, 1]. The Bernoulli ran-
dom variable has the following probability mass function

1 ify=1
px(y)=ql—-p ify=0 (2.19)
0 if y# 1andy # 0

For example, a Bernoulli random variable with parametet 0.5 could be used
to model the behavior of a random die. Note such variable evaldo be discrete
uniform.

Binomial Random Variable: A random variableX is binomial with parameters
w € [0, 1] andn € N if its probability mass function is as follows

px(y) = {(Z),uy(l — )Y ifue{0,1,2,3,...} (2.20)

0 else



30 CHAPTER 2. RANDOM VARIABLES

Binomial probability mass functions are used to model théabdlity of obtaining
y “heads” out of tossing a coimtimes. The parameterrepresents the probability
of getting heads in a single toss. For example if we want tdalgeprobability of
getting 9 heads out of 10 tosses of a fair coin, wenset 10, u = 0.5 (since the
coin is fair).

px(9) = (190) (0.5)7(0.5)1°7% = 9!(%019)!(0.5)10 = 0.00976 (2.21)

Poisson Random Variable A random variableX is Poisson with parameter
A > 0 if its probability mass function is as follows

)\u67>‘ .
, ifu>0
= w 2.22
pX(U) {0 else ( )

Poisson random variables model the behavior of random phena that occur
with uniform likelihood in space or in time. For example, pope on average
a neuron spikes 6 times per 100 millisecond. If the neuroroisg®n then the
probability of observing 0 spikes in a 100 millisecond intgris as follows

606

px(0) =~ = 0.00247875217 (2.23)

2.2 Probability density functions.

The probability density of a random variabki s a functionfy : R — R such
that for all real numbers > b the probability thatX takes a value betweenand
b equals the area of the function under the intefwah]. In other words

b
P(X € [ab]) = / Fi(u)du (2.24)
Note if a random variable has a probability density funcijpdf) then
P(X =u) = / fx(x)dz = 0 for all values ofu (2.25)

and thus the random variable is continuous.
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Interpreting probability densities:  If we take an interval very small the area
under the interval can be approximated as a rectangle, ftrusnall Az

P(X € (z,2+ Az]) = fx(x)Ax (2.26)
Fru) e DX E i’f + A7) 2.27)

Thus the probability density at a point can be seen as the atinodyprobability

per unit length of a small interval about that point. It is adetween two dif-
ferent ways of measuring a small interval: The probabiligasure of the interval
and the length (also called Lebesgue measure) of the ihtéfaat follows are

examples of important continuous random variables and finebability density
functions.

Continuous Uniform Variables: A random variableX is continuous uniform
in the interval[a, b], wherea andb are real numbers such that> q, if its pdf is
as follows;

Few) {1/(b—a) if u € [a, b] (2.28)

0 else

Note how a probability density function can take valuesdatpan 1. For exam-
ple, a uniform random variable in the interjal 0.1] takes value 10 inside that
interval and O everywhere else.

Continuous Exponential Variables: A random variableX is called exponen-
tial if it has the following pdf

Oifu<0
fxlu) = {)xexp(—)\x) if u>0 (2.29)

we can calculate the probability of the interyal2] by integration
2 2

P{X e€[1,2]}) :/ Aexp(—Az)dr = [— exp(—)\x)} (2.30)
1 1

if A = 1 this probability equalsxp(—1) — exp(—2) = 0.2325.
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Gaussian Random Variables: A random variableX is Gaussian, also known
asnormal, with parameterg € R ando? > 0 if its pdf is as follows

1 1, x—p

Wexp(_i( e )2) (231)

fz) =

wherer = 3.1415- - -, p is a parameter that controls the location of the center of
the function andr is a parameter than controls the spread of the function.eHer
after whenever we want to say that a random variable normal with parameters

p ando? we shall write it asX ~ N(u,0?). If a Gaussian random variablé

has zero mean and standard deviation equal to one, we say ihatstandard
Gaussian random variable and represent i ~ N(0,1).

The Gaussian pdf is very important because of its ubiquitessin nature thus
the name “Normal”. The underlying reason why this distritmits so widespread
in nature is explained by an important theorem knowthascentral limit theo-
rem. We will not prove this theorem here but it basically sayd titzservations
which are the result of a sum of a large number of random anepedent in-
fluences have a cumulative distribution function closelgragimated by that of
a Gaussian random variable. Note this theorem applies ty maral observa-
tions: Height, weight, voltage fluctuations, 1Q... All teegariables are the result
of a multitude of effects which when added up make the obsensadistribute
approximately Gaussian.

One important property of Gaussian random variables islthear combi-
nations of Gaussian random variables produce Gaussiaomamdriables. For
example, ifX; and X, are random variables, théh= 2+ 4X; +6.X, would also
be a Gaussian random variable.

2.3 Cumulative Distribution Function.

The cumulative distribution function, of a random varialdleas a functionF'y :
R — [0, 1] such that

Fx(u) = PX < u}) (2.32)

For example, for the random variable described?®) (
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0.0 fu<0.0

Fy (1) = 1/4 ifu>0.0andu <1 (2.33)
3/4 ifu>1andu <2
1.0 ifu>2

The relationship between the cumulative distribution tiong the probability
mass function and the probability density function is akofes:

(2.34)

Fy(u) Y scuPx(u) if X is adiscrete random variable
u) = =
* [*_ fx(z)dxz if X is acontinuous random variable

Example: To calculate the cumulative distribution function of a gonbus ex-
ponential random variabl& with paramete > 0 we integrate the exponential
pdf

“Nexp(=Azx)dzr if u>0
Fx(u) = {gﬁ ( ) olse (2.35)

And solving the integral

u

/Ou Aexp(—Az)dz = {— exp(—)\m)} =1—exp(—Au) (2.36)
0

Thus the cumulative distribution of an exponential rand@mable is as follows

Fy(u) = {(1) ~ oxp(—Au) :Igez 0 (2.37)

Observation: We have seen that if a random variable has a probability den-
sity function then the cumulative density function can btaoted by integration.
Conversely we can differentiate the cumulative distribufienction to obtain the
probability density function

fx(u) du

(2.38)
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A Property of Cumulative distribution Functions: Here is a property of cu-
mulative distribution which has important applications.nSioler a random vari-
able X with cumulative distributionf’y now suppose we define a new random
variableY such that for each outcome

Y(w)=a+bX(w) (2.39)
wherea andb # 0 are real numbers. More succinctly we say
Y =a+0bX (2.40)

If we know the cumulative distribution &f we can easily derive the cumulative
distribution ofY".

u—a u—a

Fy(u) = P(Y < u) = Pla+bX < u) = P(X < ———}) = Fx(

)
(2.41)

Example: Let X be an exponential random variable with paramaiere.,

0 if u<0O
F(u) = 2.42
x(u) {1 —exp(—Au) fu>0 (2.42)

LetY =1+ 2X. In this caser = 1 andb = 2. Thus the cumulative distribution
of Yis

- B 0 if (u—1)/2<0
Fy(u) = Fx((u—1)/2) = {1 —exp(—=Au—1)/2) if (u—1)/2>0
(2.43)

2.4 EXxercises

1. Distinguish the following standard symbdts px, Fx, fx, X, x

2. Find the cumulative distribution function of a Bernoudindom variableX
with parametey:.

3. Find the cumulative distribution of a uniform random edie with param-
etersa, b.
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4. Consider a uniform random variable in the interjgall].

(a) Calculate the probability of the intervél1, 0.2]
(b) Calculate the probability of 0.5.

5. Let X be a random variable with probability mass function

1/5 ifuc{1,2,3,4,5
px(u) = / u€d } (2.44)
0 else

(@) FindFx(4)

(b) Find P({X <3} N{X <4})

(c) Plotthe functiorhx(t) = P({X =t} | {X > t})fort =1,2,3,4,5.
This function is commonly known as the “hazard function”of If
you think of X as the life time of a systen,x (¢) tells us the proba-
bility that the system fails at timegiven that it has not failed up to
time ¢. For example, the hazard function of human beings looks like
a U curve with a extra bump at the teen-years and with a minimum
about 30 years.

6. Let X be a continuous random variable with pdf

0.25 if ue[-3,—1]
fx(u) = 4025 ifuell,3] (2.45)
0 else

(@) Plot fx. Can it be a probability density function? Justify your re-
sponse.

(b) PlotFy

7. Show thatifX is a continuous random variable with ptif andY” = a+bX
where and:, b are real numbers. Then
u—a
fr(v) = (1/) fx( b ) (2.46)
hint: Work with cumulative distributions and then diffetete them to get
densities.

8. Show that ifX ~ N(u,o?) thenY = a + bX is Gaussian.
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Chapter 3

Random Vectors

In many occasions we need to model the joint behavior of mae bne variable.
For example, we may want to describe whether two differestkst tend to fluc-
tuate in a somewhat linked manner or whether high levels okamg covary with

high lung cancer rates. In this chapter we examine the ja@habior of more than
one random variables. To begin with, we will start workinglwpairs of random
variables.

3.1 Joint probability mass functions

The joint probability mass function of the random variableandY” is a function
pxy : R? — [0,1], such that for allu, v) € R?

pxy(u,v) = PH{X =u}nN{Y =v}) (3.1)

hereafter, we use the simplified notati®.X = u,Y = u) to represenP({ X =
u} N{Y = wv}), i.e., the probability measure of the set

{w: (X (w) =wandY (w) =v)} (3.2)

3.2 Joint probability density functions

The joint probability density function of the continuousidam variablesX and
Y is a functionfxy : R?* — [0,00) such that for all(u,v) € R* and for all

37
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(Au, Av) € R?

u+Au v+Av
P(X € [u,u+ Au],Y € [v,v+ Av]) = / / fxvy(u,v)dvdu (3.3)
Interpretation  Note if Au andAwv are so small thafx y (u, v) is approximately
constant over the area of integration then
P(X € [u,u+ Aul,Y € [v,v+ Av]) = fxy(u,v)Au Av (3.4)

In other words, the probability thdtX,Y") take values in the rectangle, u +
Au] x [v,v + Av] is approximately the area of the rectangle times the deasity
a point in the rectangle.

3.3 Joint Cumulative Distribution Functions

The joint cumulative distribution of two random variabl&sandY is a function
Fxy : R? — [0, 1] such that

Fxy(u,v) = P{X <u}n{Y <o} (3.5)
note if X andY are discrete then
Fxy(u,v) = ZZpr(u,v) (3.6)
z<u y<v

and if X andY are continuous then

Fxy(u,v) = /_Zo /:)O fxy(u,v) dvdu (3.7)

3.4 Marginalizing

In many occasions we know the joint probability density aigability mass func-
tion of two random variablexX andY and we want to get the probability den-
sity/mass of each of the variables in isolation. Such a @®ecalled marginal-
ization and it works as follows:

px(u) = ZPX,Y(U, v) (3.8)

veER
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and if the random variables are continuous

fx(u) = /_OO fxy(u,v) dv (3.9

Proof: Consider the function : R — R

h(u) :/ fxy(u,v) dv (3.10)
We want to show that is the probability density function ok’. Note for all
a,b € R such thats < b

b b
P(X € [ab]) = P(X € [a,],Y € R) = / Fry () dv du — / h(u) du
‘ @1
showing that: is indeed the probability density function &f. A similar argument
can be made for the discrete case.

3.5 Independence

Intuitively, two random variable andY are independent if knowledge about
one of the variables gives us no information whatsoever tatheuother variable.
More precisely, the random variablésandY are independent if and only if all
events of the forr{ X' € [u, u+ Aul} and all events of the forflY” € [v, v+ Av]}
are independent. If the random variable is continuous, assey and sufficient
condition for independence is that the joint probabilitysiéy be the product of
the densities of each variable

fxy (u,0) = fx(u)fy(v) (3.12)

for all u,v € R. If the random variable is discrete, a necessary and sufficen-
dition for independence is that the joint probability massdtion be the product
of the probability mass for each of the variables

pxy(u,v) = px(u)py (v) (3.13)

forall u,v € R.
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3.6 Bayes’ Rule for continuous data and discrete hy-
potheses

Perhaps the most common application of Bayes’ rule occurswine data are
represented by a continuous random variabJeand the hypotheses by a discrete
random variablg{. In such case, Bayes’ rule works as follows

fX\H(um pu (i)

() (3.14)

pax(i|u) =

wherepyx : R? — [0,1] is known as the conditional probability mass function
of H given X and it is defined as follows

prx (i | w) :Alqi}iloP(H:HX € [u,u + Aul) (3.15)

fxim : R? — R, is known as the conditional probability density functionof
given H and it is defined as follows: For all b € R such that, < b,

b
P(X € [ab]| H = i) :/ P (uli) du (3.16)

Proof: Applying Bayes’ rule to the eventsd = i} and{X € [u,u + Au]}

P(X € [u,u+ Au| | H=1i) P(H =1)
P(X € [u,u+ Au)

ffr Y fx(z) dz

P(H=1i|X € [u,u+Au]) =

(3.17)

Taking limits and approximating areas with rectangles

lim P(H=i|X € [u,u+ Au]) = Aufxm(u\i)pH(i)

Au—0 Aufx(u) (3.19)

The Au terms cancel out, completing the proof.
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3.6.1 A useful version of the LTP

In many cases we are not giveiy directly and we need to compute it using
fxig andpy. This can be done using the following version of the law oéltot
probability:

fxy="" pulj) fxuulj) (3.20)

jERangéH)

Proof: Note that for alla,b € R, witha <b
b

> pnGfxnldi= Y pu() [ fatulide @:21)
) a

@ jeRangéH jeRangéH)
= Y pu()P(X €a,0]| H = j) = P(X € [a,b]) (3.22)
jERangéH)

and thus) _ ranger) P (7) [xu (ul7) is the probability density oX'.

Example: Let H be a Bernoulli random variable with parameter= 0.5. Let
Yo~ N(0,1),Y; ~ N(1,1) and

X =(1- H)(Yo) + (H)(Y1) (3.23)

Thus,
pH(O) = pH<1) =05 (3.24)
Frpu(u | d) = \/12_7Te(“i)2/2 fori e {1,2}. (3.25)

Suppose we are given the value= R and we want to know the posterior prob-
ability that H takes the value 0 given that took the valueu. To do so, first we
apply LTP to computé x (u)

fX(U) = (05)\/% (GUQ/2 + G(UUQ/Q) = (05)%6112/2 (1 + €2u1> (326)
s s
Applying Bayes'’ rule,
1
1+ e (1-2u)

So, for example, it = 0.5 the probability that7 takes the valu@ is 0.5. Ifu =1
the probability thatf{ takes the valué drops down td).269.

prx(0]u) = (3.27)
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3.7 Random Vectors and Stochastic Processes

A random vector is a collection of random variables orgashiae a vector. For
example if Xy, ..., X, are random variables then

X =(XY,..., X, (3.28)

is a random vector. A stochastic process is an ordered sahdbm vectors. For
example, if/ is an indexing set and’,, is a random vector for all € [ then

X =(X;i:iel (3.29)

is a random process. When the indexing set is countabis,called a “discrete
time” stochastic process. For example,

X =(X,Y, X5,...) (3.30)

is a discrete time random process. If the indexing set areglenumbers, then
Y is called a “continuous time” stochastic process. For exanifpX is a random
variable, the ordered set of random vectors

X =(X;:teR) (3.31)

with
Xi(w) = sin(2nt X (w)) (3.32)

is a continuous time stochastic process.



Chapter 4

Expected Values

The expected value (or mean) of a random variable is a gératiah of the notion
of arithmetic mean. It is a number that tells us about the t&eaf gravity” or

average value we would expect to obtain is we averaged a waegg Inumber
of observations from that random variable. The expectedeval the random
variable X is represented aB(X) or with the Greek letter:, as inux and it is

defined as follows

S e px(w)u  for discrete ravs

4.1
[ px(u)u du for continuous ravs (4.1)

E(X):MXZ{

We also define the expected value of a number as the numbkr iitse for all
u € R

E(u) =u 4.2

Example: The expected value of a Bernoulli random variable with patame
is as follows

B(X) = (1 - w)(0.0) + (u)(L.0) = (4.3)

Example: A random variableX with the following pdf

P (1) = {—a if u € [a,b) (4.4)
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is known as a unifornf0, 1] continuous random variable. Its expected value is as
follows

1 b? — a?

(b—a)( 2

)=(a+b)/2 (45)

Example: The expected value of an exponential random variable withmpa
eter \is as follows (see previous chapter for definition of an exgmdial random
variable)

E(X) = / upx (u)du = / ulexp(—Au)du (4.6)
—o0 0
and using integration by parts
E(X)= [— uexp(—/\u)ro + /OO Aexp(—Au)du = — [)\ exp(—)\u)ro _!
0 0 0 (4)\7)

4.1 Fundamental Theorem of Expected Values

This theorem is very useful when we have a random varighidnich is a function

of another random variabl&. In many cases we may know the probability mass
function, or density function, foX but not forY. The fundamental theorem of
expected values allows us to get the expected valué efen though we do not
know the probability distribution of”. First we’ll see a simple version of the
theorem and then we will see a more general version.

Simple Version of the Fundamental Theorem: Let X : 2 — R be a rav and
h : R — R a function. LetY” be a rav defined as follows:
Y(w)=h(X(w)) forallw e R (4.8)

or more succinctly
Y = h(X) (4.9)
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Then it can be shown that

B(Y) = uexPx(wh(u)  for discrete ravs (4.10
f_ px(u)h(u) du for continuous ravs

Example: Let X be a Bernoulli rav and” a random variable defined a5 =
(X —0.5)2. To find the expected value &fwe can apply the fundamental theorem
of expected values with(u) = (u — 0.5)2. Thus,

= px(u)(u—0.5)* = px(0)(0 — 0.5)% + px(1)(1 — 0.5)*

= (0.5)(0.5)* 4 (0.5)(—0.5)* = 0.25 (4.11)

Example: The average entropy, or information value (in bits) of a mndsari-
able X is represented ad (X) and is defined as follows

H(X) = —FE(logypx(X)) (4.12)

To find the entropy of a Bernoulli random variablée with parametey: we can
apply the fundamental theorem of expected values usinguhetibn h(u) =
log, px (u) . Thus,

=Y px(u)logy px (u) = px (0) log, px(0) + px (1) log, px (1)

u€eR

= (1) logy(p) + (1 — ) logy(1 — p) (4.13)
For example, ifu = 0.5, then

H(X) = (0.5)10g,(0.5) + (0.5) log,(0.5) = 1 bit (4.14)

General Version of the Fundamental Theorem: Let X4, ..., X, be random
variables, let” = (X3, ..., X,,), whereh : R® — R is a function. Then

E(Y) = YUy yun) € Ry, x (g, .oy un)h(ug, .o uy) for discrete ravs
e [y x (s un) B, - wn)du - - du,  for continuous ravs

(4.15)
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4.2 Properties of Expected Values

Let X andY be two random variables amdandb two real numbers. Then

EX+Y)=EX)+EY) (4.16)
and
E(a+0X)=a+bE(X) (4.17)
Moreover if X andY are independent then
E(XY)=EX)E(Y) (4.18)

We will prove these properties using discrete ravs. Thefprace analogous for
continuous ravs but substituting sums by integrals.

Proof: By the fundamental theorem of expected values

X+Y ZZpruv u+ )

= u) pxy () +Q_v) pxy(uv)
= upx(u)+ Y vpy(v) = E(X) + E(Y) (4.19)

where we used the law of total probability in the last step.

Proof: Using the fundamental theorem of expected values

E(a+bX) = pr )(a + bu)

= aZpX(u) + qupX(u) =a+bE(X) (4.20)

u€eR

Proof: By the fundamental theorem of expected values

=3 > pxy(uv)uw (4.21)

u€R veR
if X andY are independent therny, y(u v) :pX( )p ( ). Thus
Z upx (u Z vpy (v (X)E(Y) (4.22)

4
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4.3 Variance

The variance of a random variablé is a number that represents the amount
of variability in that random variable. It is defined as theested value of the
squared deviations from the mean of the random variabletasdapresented as
Var(X) or aso%

Var(x) = o2 = E[(X—pux)?] = {ZJQERPX(U)(U —ux)*  for discr.ete ravs
J 7 px(u)(u — px)*du  for continuous ravs
(4.23)
Thestandard deviation of a random variabl& is represented as §&) or o and
it is the square root of the variance of that random variable

Sd X) =ox = y/Var(X) (4.24)

The standard deviation is easier to interpret than the wegidor it uses the same
units of measurement taken by the random variable. For ebeaiinjne random
variable X represents reaction time in seconds, then the variance asured
in seconds squares, which is hard to interpret, while thedstal deviation is
measured in seconds. The standard deviation can be irtetpas a “typical”
deviation from the mean. If an observation deviates frorntiean by about one
standard deviation, we say that that amount of deviatiostaridard”.

Example: The variance of a Bernoulli random variable with parametés as
follows

Var(X) = (1 - w)(0.0 — )’ + (1) (LO— ) = (W)(1— ) (4.25)

Example: For a continuous uniforrfu, b] random variableX, the pdf is as fol-

lows
) ifuela)
px(w) = {8 if u ¢ [a,0] (4.26)

which we have seen as expected value= (a + b)/2. Its variance is as follows

00 b
oy = / upx (u)du = ! / (u — (a+b)/2)*du (4.27)

oo b—a
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and doing a change of variablgs= (v — (a + b)/2)

1 [l —a)/2  b—a
2 2 3
_ dy — [ } 4.28
ox b—a (a—b)/2 yay= b / (a— b)/2 12 ( )

Exercise: We will show that in a Gaussian random variable the parametsr
the mean and the standard deviation. First note

Wexp(—l(“ 1) (4.29)

— 1)

changing to the variablg = (u

BE(X) =

Noros /_Z yexp(—l(g)Q)dy

W / exp(—5(L)) = n (430)

The first term is zero because the integrand is an odd funétien g(

tien g ()
—g(x). For the variance
1 u—p,
Var(X) 2 exp(—= du 4.31

) W xp(—5(——=)") (4.31)

changing variables t9 = (u — M)
> 1
var(X) = 2/ yyexp(=5(2)")dy (4.32)
2104 J - 20

and using integration by parts

Var(X) =~ (= o*[yexp— 5 /)

“+00

s [T _1 Yo 9
+o /Ooexp( 2(0) )dy) =0° (4.33)
4.3.1 Properties of the Variance
Let X andY be two random variables amdandb two real numbers then

Var(aX +b) = a*Var(X) (4.34)
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and
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y) (4.35)

where Cov X, Y') is known as the covariance betwe&randY and is defined as

Cov(X,Y) = E[(X — BE(X))(Y — E(Y))] (4.36)

Proof:

Var(aX +b) = E[(aX +b— E(aX +0))?] = E[(aX +b— aB(X) — b)?]
= E(a(X — BE(X))?] = d*E[(X — E(X))?] = a*Var(X) (4.37)

Var(X +Y)=E(X +Y - E(X +Y))> = BE(X — ux) + (Y — py))*
= B[(X = px)*| + BI(Y — py)?] + 2E[(X — px)(Y = py)]  (4.38)

O

If Cov(X,Y) = 0 we say that the random variabl&sandY areuncorrelated.
In such case the variance of the sum of the two random vasaujeals the sum
of their variances.

It is easy to show that if two random variables are indepentey are also
uncorrelated. To see why note that

Cov(X,Y) = E[(X—px)(Y — py)] = E(XY) — py E(X) (4.39)
— pxE(Y) + pxpy = E(XY) — E(X)E(Y)  (4.40)

we have already seen thatifandY are independent thefi(XY) = E(X)E(Y)
and thusX andY are uncorrelated.

However two random variables may be uncorrelated and #illiépendent.
Think of correlation as a linear form of dependency. If twoiables are uncor-
related it means that we cannot use one of the variables early predict the
other variable. However in uncorrelated variables therg siél be non-linear
relationships that make the two variables non-independent
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Example: Let X,Y be random variables with the following joint pmf

1/3 ifu=—-1landv =1
1/3 ifu=0andv =0
1/3 ifu=1landv=1
0 else

pxy(u,v) = (4.41)

show thatX andY are uncorrelated but are not independent.

Answer: Using the fundamental theorem of expected values we can wemp
E(XY)

E(XY) = (1/3)(=1)(1) + (1/3)(0)(0) + (1/3)(1)(1) = 0 (4.42)

From the joint pmf ofX andY we can marginalize to obtain the pmf &fand of
Y

1/3 ifu=—1
1/3 ifu=0
= 4.43
px(u) 1/3 ifu=1 (4.43)
0 else
1/3 ifv=0
py(v) =<2/3 ifo=1 (4.44)
0 else

Thus

E(X) = (1/3)(~1) + (1/3)(0) + (1/3)(1) = 0 (4.45)
E(Y) = (1/3)(0) + (2/3)(1) = 2/3 (4.46)
Cov(X.Y) = E(XY) - E(X)E(Y) =0 (0)(2/3) =0 (447)

ThusX andY are uncorrelated. To show thadtandY are not independent note
that

pxy(0,0) =1/3 # px(0)py (0) = (1/3)(1/3) (4.48)
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4.4  Appendix: Using Standard Gaussian Tables

Most statistics books have tables for the cumulative distion of Gaussian ran-
dom variables with mean = 0 and standard deviation= 1. Such a cumulative
distribution is known as the standard Gaussian cumulatisteiloltion and it is
represented with the capital Greek letter “Phi”, i®.,So®(u) is the probability
that a standard Gaussian random variable takes valuesesraakqual tou. In
many cases we need to know the probability distribution ofaaigsian random
variable X with meany different from zero and variane€ different from 1. To
do so we can use the following trick

Fx(u) = o(Z— (4.49)

g

For example, the probability that a Gaussian random varialth meanu = 2
and standard deviation = 4 takes values smaller thahcan be obtained as
follows

P(X <6) = Fx(6) = ®(" ) = a(1) (4.50)

If we go to the standard Gaussian tables we seedtfiit = 0.8413.

Proof: Let Z be a standard Gaussian random variable,dnd 1 + cZ. Thus,
EX)=p+EZ)=u (4.51)

Var(X) = o*Var(Z) = o* (4.52)

Thus, X has the desired mean and variance. Moreover sihisea linear transfor-
mation of Z then X is also Gaussian. Now, using the the properties of cumelativ
distributions that we saw in a previous chapter

Fx(u) = Fy((u— u)/0) = ((u - p)/o) (4.53)

O

Example: LetY be a Gaussian rav withy = 10 ande? = 100. Suppose we
want to computey (—20). First we compute = (—20 — uy)/oy = —1. We
go to the standard Gaussian tables and fipd—1) = 0.1587 Thus Fy(20) =
Fy(—1) = 0.1587.
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4.5 EXxercises

1. Let a random variabl& represent the numeric outcome of rolling a fair
die, i.e.,px(u) = 1/6 for u € {1,2,3,4,5,6}. Find the expected value ,
standard deviation, and average information valu& of

2. Consider the experiment of tossing a fair coin twice. Ketbe a random
variable taking value 1 if the first toss is heads, and 0 otlsew et X, be
a random variable taking value 1 if the second toss is heads) &lse.

(a) FlndE(Xl), E(XQ)
(b) Find Var(X;), Var(X5)
(c) Find Var X;/2) and Vaf X, /2)
(d) Find Var(X; + X5,) and Vaf(X; + X5)/2]
3. Find the information value of a continuous random vagablthe interval
[a, b].
4. Show that the variance of an exponential random varialiteparameten
is1/)2.

5. Let X be a standard Gaussian random variable. Using Gaussias fai:

(@) Fx(—1.0)
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The precision of the arithmetic mean

Consider taking the average of a number of observations allha¢h are ran-
domly sampled from a large population. Intuitively it seetinat as the number
of observations increases this average will get closer bwcto the true popu-
lation mean. In this chapter we quantify how close the samman gets to the
population mean as the number of observations in the samgleases. In other
words we want to know how good the mean of a sample of noisyreatens is
as an estimate of the “true” value underlying those obskemat

Let’'s formalize the problem using our knowledge of probiapitheory. We
start withn independentandom variables variables,, . . ., X,,. We will also as-
sume that all these random variables have the same mear, wlwill represent
asu and the same variance, which we will representadn other words

E(X)) = B(Xy) = - = B(X,) = p (5.2)

and
Var(X;) = Var(X,) = --- = Var(X,,) = o* (5.2)

This situation may occur, when our experiment consists doanly selecting:
individuals from a population (e.g., 20 students from UCSD}his case the out-
comes of the random experiment consists of a samplesobjects. The outcome
space is the set of all possible samplesidubjects. The random variablé;
would represent a measurement of subject numliethe sample. Note that in
this case all random variables have the same mean, whichdveeuéqual to the
average observation for the entire population. They alse kize same variance,
since all subjects have an equal chance of being in any of pessible positions
of the samples.

53
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Given a sample; we can average the values taken by the random variables
for that particular sample. We will represent this averag& a

_ 1 <
Xp(w) ==Y X;(w); forall Q 5.3
(w) n;1 (w); forallw e (5.3)
More concisely,
_ 1 «—
X,=-) X, 5.4
- (5.4)

Note thatX,, is itself a random variable (i.e., a function from the outeospace
to the real numbers). We call this random variable the samplan.

One convenient way to measure the precision of the sample mé¢a com-
pute the expected squared deviation of the sample mean fr@tnute population
mean, i.e.,

E[(Xn — 1)?] (5.5)

For example, it/ E[(X,, — uy)?] = 4.0secs this would tell us that on average the
sample mean deviates from the population mean by about ds0 se

5.1 The sampling distribution of the mean

We can now use the properties of expected values and vasidocderive the
expected value and variance of the sample mean .

B(X) = - Y B(X) = s (5.6)

thus the expected value of the sample mean is the actualgtapumean of the
random variables. A consequence of this is that

E[(Xn - N)Q] = E[(Xn - E(Xn>>2] = Var(Xn) (5.7)

This takes us directly to our goal. Using the properties efuariance, and con-
sidering that the random variablég, . . ., X,, are independent we get

B 2

Var(X,) = % iVar(Xi) - % (5.8)
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The standard deviation of the mean is easier to interpret tta variance of the
mean. It roughly represents how much the means of indepénaetgomly ob-
tained samples typically differ from the population meamcg the standard de-
viation of the mean is so important, many statisticians gieespecial name: the
standard error of the mean. Thus the standard error of the mean simply is the
square root of the variance of the mean, and itis represested X,,) or Se(X,,).

Thus,
g

— — 2
SAX,) = = = VB — ) (5.9)
Finally we are done! Equatio?? tells us that the uncertainty of the sample mean
(its standard deviation) increases proportionally to theeutainty about individ-
ual observationss() and decreases proportionally to the square root of the rumb
of observations. Thus, if we want to double the precisionhef $ample mean
(reduce its standard deviation by half) we need to quadtingl@umber of obser-
vations in the sample.

Example: Let X; and X, be independent Bernoulli random variables with pa-
rametery = 0.5. ThusE(X;) = E(X,) = p = 0.5 and VafX;) = Var(X,) =
o? = 0.25, moreover

E(X5) = (0)(0.25) + (0.5)(0.5) 4 (1)(0.25) = 0.5 = 1 (5.10)

Var(X,) = 0%/2 = 0.125 (5.11)

5.1.1 Central Limit Theorem

This is a very important theorem which we will not prove hérae theorem tells
us that as: goes to infinity, thecumulative distributiorof X,, is closely approx-
imated by that of a Gaussian random variable with m&4i,,) and standard
deviation SdX,,). In practice forn > 30 the Gaussian cumulative distribution
provides very good approximations.

Example: We toss a fair coin 100 times. What is the probability that the p
portion of “heads” be smaller or equal to 0.45?

Answer: Tossing a fair coin 100 times can be modeled using 100 indkgren
identically distributed Bernoulli random variables eachndfich has parameter
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i = 0.5. Let’s represent these 100 random variableXas . ., X0 whereX;
takes the value 1 if thé" time we toss the coin we get heads. Thus the proportion
of heads is the average of the 100 random variables, we \pilesent it asy .

X = 1—(1JO(X1+---+X100) (5.12)
We know
p=EX;) == E(Xio) =05 (5.13)
o? =Var(X;) = --- = Var(Xg) = 0.25 (5.14)
Thus
E(X)=0.5 (5.15)
Var(X) = 02/100 = 0.0025 (5.16)

Sincen = 100 > 30 the cumulative distribution ok is approximately Gaussian.
Thus
0.45 — 0.5

P(X <0.45) = Fx(0.45) ~ &( o

) = ®(—1) =0.1586  (5.17)

5.2 EXxercises

1. The Central Limit Theorem

(a) Goto the book Web site and click on LinuStatsCoin Simulator

(b) Do 1000 replications of a coin tossing experiment. Eagieament
should consists of 10 coin tosses (10 observations per iexpet).
The result should be 1000 numbers each of which represenfzoh
portion of tails obtained in a particular experiment. If weceded
Heads as “0” and tails as “1”, the outcome of a coin toss is acoooe
from a Bernoulli 0,1 random variable with parameter= 0.5. The
proportion of tails obtained in 10 tosses is the average ohd&pen-
dent identically distributed Bernoulli random variables.

D¢
This average is itself a random variable. Moreover the e¢titnit
theorem tell us that it should be approximately Gaussian. wille

check that now:
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(c) Use the Edit menu in your browser to copy the 1000 numbaeseed
in the coin tossing experiments.

(d) Go back to LinuStats and choose the descriptive sizipage.

(e) Use the Edit menu in your browser to paste the 1000 nunntterthe
data window.

() Choose a minimum value of 0, maximum value of 1, and windéw o
0.1

(g9) Analyze the data by clicking the appropriate button.

(h) Copy the resulting relative frequency table and tramsfibinto a cu-
mulative distribution function

(i) Copy the Mean and SD (Standard Deviation) of the 1000 nusmbe
Explain what this standard deviation means. [I'll call thesenbers
nx anda)g

(j) Compare the obtained cumulative distribution functioittvthat pre-
dicted by a Gaussian distribution with meagp and standard deviation

Ox.
2. The sampling distribution of the mean

(a) Go to the coin simulator and do 1000 experiments each ithss
(i.e., one observation per experiment). Using the sameepkge as
in the previous exercise, calculate the mean and standsiatioa of
the 1000 experiments. Plot the relative frequency denstygon.
Interpret your results.

(b) Same as the previous question but now toss the coin 2 peresxper-
iment. Obtain the new mean and standard deviation and netemyhat
they mean.

(c) Same with 4, 16 and with 32 observations per experiment.

(d) Plot a graph with the obtained means as a function of timebeu of
tosses.

(e) Plot a graph with the obtained standard deviations asdcitn of the
number of tosses.

(H Plot a graph with the obtained variances as a functiorhefrtumber
of tosses.
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(g) Explain your results. How does the mean, variance, aardsird devi-
ation change as the number of observations per experimenaises.
How does the relative frequency density polygon changeastim-
ber of observations per experiment increases? Does it neglse?

3. Whatis less probable: 1) to get 80 or more tails out of t@saifair coin 100
times, 2) to get 30 or more tails out of tossing a fair coin 5®ets. NOTE:
Sincen > 30 you can assume that the cumulative distribution of the mean
Is approximately Gaussian.

4. An experimenter inserts intracellular electrodes onrgelaample of ran-
domly selected neurons in primary visual cortex (V1). lo¢laular elec-
trodes are designed to measure the response of single seufde re-
searcher finds the average response of the neurons is 10smavaltthe
standard deviation 1 m\olt. On a subsequent experimenteabearcher
inserts extracellular electrodes on randomly selecteatioe in V1. Extra-
cellular electrodes compute the average response of a mwhipeurons
around the tip of the electrode. The researcher finds that Wieeelectrode
is extracellular the average response is still 10 mVoltsheistandard devi-
ation goes down to 0.01 m\olts. Assume the neurons in V1 @ependent
and have identical response distributions.

(a) Explain how the standard deviation of the mean of n inddpet ran-
dom variables changes as the number of random variablesises.

(b) Estimate how many neurons are having an effect on thaadtular
electrode. Justify your response.



Chapter 6

Introduction to Statistical
Hypothesis Testing

The goal of statistical hypothesis testing is to providetsnal basis for making
inferences and decisions about hypotheses based on unaata. For exam-
ple based on the results of a experiment with a limited samipiedividuals we
may want to decide whether there is enough evidence to sagrtieking causes
cancer. There are two major approaches to statistical hgpist testing: 1) The
classic approach, 2) The Bayesian approach. The classioagpis the standard
used when analysing scientific experiments. The Bayesiaroapip is dominant
in machine perception, artificial intelligence and engiimegapplications.

6.1 The Classic Approach

Classic statisticians (also known as frequentists) viewrgific hypotheses as
propositions with a fixed truth value. Within this approachypothesis is either
true or false and thus it makes no sense to talk about its pildipaFor example,
for a frequentist the hypothesis “Smoking causes cancegitler true or false.
It makes no sense to say that there is a 99 % chance that smakirsgs can-
cer. In this approach we perform experiments, gather dataf dne data provide
sufficient evidence against a hypothesis we reject the hgsa.

Here is an example that illustrates how the classic appraacks in practice.
Suppose we want to disprove the hypothesis that a particalaris fair. We toss
the coin 100 times and get 74 % tails. We model our obsern&@sna random
variableX which is the average of 100 iid Bernoulli ravs with unknowngraeter

59
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%
100

- 1
X =15 E;X (6.1)
The statement that we want to reject is calted null hypothesis In this case
the null hypothesis is thai = 0.5, i.e., that the coin is fair. We do not know
E(X) nor Var( X). However we know what these two values would be if the null
hypothesis were true. We represent the conditional exgeetiee of X assuming
that the null hypothesis is true & X | H, true). The variance ofX assuming
that the null hypothesis is true is represented ag.XarH, true). In our example

E(X | H, true) = 0.5 (6.2)
Var(X | H, true) = 0.25/100 (6.3)

Moreover, due to the central limit theorem the cumulatiatribution of X should
be approximately Gaussian. We note that a proportion of aiglcorresponds to
the following standard score

.74 — 0.
7= 01705 g (6.4)

/0.25/100

Using the standard Gaussian tables we find
P({X > 4.8} | H, true) < 1/10° (6.5)

If the null hypothesis were true the chances of obtaining 7¢i% or more are
less than one in a million. We now have two alternatives: 1)céfekeep the null
hypothesis in which case we would explain our observatigranaextremely un-
probable event due to chance. 2) We can reject the null hgpin view of the
fact that if it were correct the results of our experiment lgdae an extremely im-
probable event. Sir Ronald Fisher, a very influential clasttistician, explained
these options as follows:

The force with which such conclusion is supported logicedlihat of a simple
disjunction: Either an exceptionally rare chance eventdeasirred, or the theory
or random distribution [the null hypothesis] is not tr{/@

In our case obtaining 74 % tails would be such a rare eveneihthl hypoth-
esis were true that we feel compelled to reject the null Hypsis and conclude
that the coin is loaded. But what if we had obtained say 55 %2aWould that
be enough evidence to reject the null hypothesis? What siveeldonsider as
enough evidence? What standards should we use to reject thegs? The next
sections explain the classic approach to these questiondo $o it is convenient
to introduce the concept of Type | and Type Il errors.
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6.2 Type |l and Type Il errors

Jerzy Neyman and E.S. Pearson developed the bulk of thacckgsroach to
hypothesis testing between 1928 and 1933. Neyman and PReansphasized
hypothesis testing as a procedure to make decisions réideias a procedure to
falsify hypothesis. In their own words

Without hoping to know whether each separate hypothesigesar false, we
may search for rules to govern our behavior with regard tonthi@ following
which we insure that, in the long run experience, we shalbedbo often wrong.
[?]

They viewed the task of statistical hypothesis testing amlai to the detec-
tion of signals in the presence of noise. Let me illustrate toncept with the
following analogy. Suppose you are a fire detector. You argjimg up there in
the ceiling of a house and your task is to decide whether theés on fire. Once
in a while you measure the amount of smoke passing throughsgmsors. If the
amount is beyond a critical value you announce the housaamrts that the house
is on fire. Otherwise you stay quiet.

In this analogy the null hypothesis is the theoretical gubsi that the house
is not on fire and the alternative hypothesis is that the hmuse fire. Measuring
how much smoke there is out there is the equivalent of contyean experiment
and summarizing the results with some statistic. The in&tiom available to us
is imperfect and thus we never know for sure whether the higumas not on fire.
There is a myriad of intervening variables that may randochignge the amount
of smoke. Sometimes there is a lot of smoke in the house but ikeno fire,
sometimes, due to sensor failure, there may be fire but ogpsgdo not activate.
Due to this fact we can make two types of mistakes:

1. We can havéalse alarms situations where there is no fire but we announce
that there is afire. This type of error is knowneaBype | error . In scientific
research, type | errors occur when scientists reject nylbtheses which in
fact are true.

2. We can alsmissthe fire. This type of error agype Il error . Type Il errors
occur when scientists do not reject null hypothesis whiclaat are false.

Note that for type | errors to happen two things must occur:
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= Type | errors
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Figure 6.1: An illustration of the process of statisticapbthesis testing. The
upper figure shows the distribution of smoke when there is o fThe lower
figure shows the distribution when there is fire. It can be sleaton average there
Is more smoke when there is fire but there is overlap betwestwith conditions.
The task of hypothesis testing is to decide whether therérie hased only on the
amount of smoke measured by the sensor.

(1) The null hypothesis must be true.
(6.6)
2) We reject it.




6.3. THE BAYESIAN APPROACH 63

and for type Il errors to happen two things must occur:

(1) The null hypothesis must be false.
(6.7)
(2) We do not reject it.

6.2.1 Specifications of a decision system

The performance of a decision system can be specified in w@fritsspotential to
make errors when the null hypothesis is true and when thengpbthesis is false.

e Thetype | error specification is the probability of making errors when the
null hypothesis is true. This specification is commonly esgnted with the
symbola. For example if we say that a test has< 0.05 we guarantee that
if the null hypothesis is true the test will not make more th&0 mistakes.

e Thetype Il error specification is the probability of making errors when
the null hypothesis is false. This specification is commameyresented
with the symbols. For example if we say that for a testis unknown we
say that we cannot guarantee how it will behave when the gplbtinesis is
actually false.

e The Power specificationis the probability of correctly rejecting the null
hypothesis when it is false. Thus the power specificationds .

The current standard in the empirical sciences dictate$daha scientific test to
be acceptable the type | error specification has to be smallear equal to 1/20
(i.e.,a < 0.05). The standard does not dictate what the type Il error sjgatifin
should be. In the next chapter we will see examples of staldests that meet
this type | error specification.

6.3 The Bayesian approach

The essence of the Bayesian approach can be summarizedoassfoll
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e A recognition of the fact that humans not only make binaryislens about
hypotheses but also want to assign degrees of belief toffleeatit hypothe-
ses

e An assumption that probability is useful to describe bslm@bt just relative
frequencies.

e An emphasis on the problem of how to combine external dath prior
knowledge to modify beliefs.

To Fisher’'s statement that

“It should be possible to draw conclusions from the data &lon
without apriori assumptions.?],

L. Savage, a well known Bayesian replies that

“We had a slogan about letting the data speak for themselves, b
when they do, they tell us how to modify our opinions, not wayah-
ion is justifiable’ [ 7]

In practice the main difference between Bayesians and fracpteis that Bayesians
treat hypotheses as if they were probabilistic events amgldhe willing to assign
them probability values. Here is an example of how the Bayesgroach would
work in practice.

Example: A doctor believes that a patient has a 10% chance of havingeLym
disease. She gives the patient a blood test and the test aarhessitive. The
manual for this test says that that out of 100 patients witin¢ylisease, 80 % test
positive. Moreover, out of 100 patients with no Lyme dised@éxb test positive.
What is the probability that the patient has Lyme disease?

Answer: If you were a pure classic you would be unwilling to answes tfues-
tion. You would simply say that probabilities should not lppled to empirical
hypotheses. This person either has Lyme disease or he dbeégounovould sim-
ply say that your tools do not apply to this problem. If you ev®ayesian you
would be willing to use probability theory to play with knasdge and internal
beliefs so this question makes sense to you. You could repréise hypothesis
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that the patient has Lyme disease as an et&nihich has a prior probability of
10 %.

P(Hy) =0.1 (6.8)
P(Hy)=1-P(H;)=0.9 (6.9)
where H, represents the hypothesis that the patient does not have tisease.
The positive test is a data evetwith the following characteristics
P(D| Hy) =038 (6.10)
P(D | Hy) =03 (6.11)
Now you could apply Bayes’ theorem to compute the probabilitthe hypothe-
ses given the data
(0.8)(0.1)
(0.8)(0.1) + (0.3)(0.9)
After seeing the results of the test, it would be rationaltfe Doctor to update
her beliefs and give her patient a 23 % probability of havigge disease. Note
the emphasis here is on upgrading beliefs based on empiatal The emphasis
is not on deciding whether a hypothesis is true or false. Qfs®it is now up to

the doctor and her patient to use the 23 % probability figupetbaps get a better
test or to evaluate the costs and benefits of treatments.

P(H, | D) = ~0.23 (6.12)

6.4 Exercises

1. Urn A contains 50% black balls 50 % white balls. Urn B com$aé5 %
black balls 55 % white balls. You get a sample of n randomlgateld balls.
All balls in the sample belong to the same urn but you do notwkwiich
one. Your task is to decide which urn the sample belongs to.tHeenull
hypothesis be the idea that the sample comes from Urn A.

(a) Suppose there are 10 balls in the sample (i.e., n = 10).

i. What would the critical value be for a Type | error specificat
of 1/20 ?

ii. What would the power specification be? NOTE: in this case we
can calculate the power because it is possible to find theluist
tion of the mean assuming the alternative hypothesis is thue
general this may not be possible.
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iii. What would the critical value be for a Type | error spedtion
of 1/100 ?

iv. What would the power specification be if we use a Type | error
specification of 1/1007?

(b) Same as the previous 4 questions but usirg 20 instead ofn = 10.
What did you learn out of this exercise?

2. True or false (justify your response):

(a) Due to the current standards we should expect one out sdi2atific
studies to be wrong.

(b) An experiment results in a p-value of 0.03, another expant in a p-
value of 0.0001. Using the current 0.05 standard in both raxgats
we reject the null hypothesis. Moreover, in the second emyaart
there is a smaller chance of being wrong by rejecting thehygbth-
esis.

(c) An experiment results in a p-value of 0.00001. Theretbeetype |
error specification is 0.00001.

(d) An experiment results in a p-value of 0.5. The probapbdit making
a type | error in this experiment is unknown.

(e) An experiment results in a p-value of 0.5. The power dmation of
this experiment is 0.5.

() An experiment results in a p-value of 0.01. The prob&pihf making
a type Il error in this experiment is unknown.

(g) An experiment results in a p-value of 0.01. The probabdf making
atype | error in this experiment is unknown.

(h) An experiment results in a p-value of 0.01. The type | especifica-
tion is 0.05.

(i) An experiment results in a p-value of 0.01. The prob&pihf making
a type Il error in this experiment zero.

(1) An experiment results in a p-value of 0.01. The prob&pihf making
a type I error in this particular experiment is either 1 or O.



Chapter 7

Introduction to Classic Statistical
Tests

In the previous chapter we saw that the current standardspirieal science use
classical statistical tests with a type | error specificatd5 %. In this chapter we
see two classic statistical tests: The Z test and the T téshe@wo the second one
is more general and by far more important. The Z test is intced for historical
reasons and because it serves as a nice steping stone toetste T t

7.1 The Ztest

This test isused when the null hypothesis specifies the mean and the vaniee

of the observations Let's see how the test works using the following example.
We toss a coin 100 times and we obtain 55 heads. Is this ensiggnee to say
that the coin is loaded?

7.1.1 Two tailed Z test

1. We have: random variables
Xi,..., X, (7.1)

where X; commonly represents a measurements from subjeca sample
of n subjects. We assume the following:

e The random variables are independent and identicallyilolig&d.

67
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e If n < 30 the random variables are Gaussian.

In our exampleXy, ..., X,, are Bernoullirandom variables. If the outcome
of toss number is heads therX; takes value 1 otherwise it takes value 0.

. Formulate a null hypothesis that specifies the mean andatd deviation

of the mean. We represent these/dsX | H,, true) and Sd.X | H, true)

In our example the null hypothest$, is that the coin is fair. In such case
E(X | H,true) = E(X, | H, true) = 0.5 and

] SAX; | Hyt 0.5
SAX | H, true) = 22 ’\/ﬁ r“e>zﬁzo.05 (7.2)

. Define the random variablg as follows

_ X-E(X|H,truey X — E(X|H,true)

7 — _ = 7.3
Sd X | H, true) SdX; | H,true)/\/n (7.3)
. Compute, the value taken by the random varighle
In our example
_ 0.55 — 0.5 _q (7.4)
0.05

. If Z ¢ [-1.96,1.96] reject H,, and report that the results westatistically

significant. Otherwise withhold judgment and report that the resvagge
not statistically significant.

In our exampleZ € [—1.96, 1.96] so we withhold judgment. We do not have
enough evidence to say that the coin is loaded.

Proof: Since this is a classical test we just need to show that wistptiocedure

the type | error specification is no larger than 5 %. In otherds® ( H,rejectedH ,true) <
0.05. To do so first we will show that iff,, is true thenZ is an standard Gaussian
random variable. First note thatis just a linear combination oX
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Z=a+bX (7.5)
E(X | H, true)
— _ 7.6
¢ Sd X | H, true) (7.6)
1
b= - 7.7
Sd X | H, true) (7.7)
If X,,...,X, are Gaussian theX is also Gaussian (because the sum of Gaus-

sian is Gaussian). IK,..., X, are not Gaussian but > 30, by the Central

limit theorem, then the cumulative of is approximately Gaussian. Under these
conditionsZ is also Gaussian (becaugeis a linear transformation ok and a
linear transformation of a Gaussian rav is also GaussianyebVer

E(Z| H,true) = a + bE(X | H, true) = 0 (7.8)
Var(Z | H, true) = b*Var(X | H, true) = 1 (7.9)

Thus, if the null hypothesis is true and the assumptionseftkest are met, then
Z is a standard Gaussian random variable and

P(H, rejected H, true) = P(Z ¢ [—1.96,1.96]) = 2¢(—1.96) = 1/20 (7.10)

OJ

7.1.2 One tailed Z test

In this case the null hypothesis includes an entire rangealieg for the sample
mean. For example, the null hypothesis could be that theatggearalue of the
mean is smaller than 0. Or that the expected value of the nsesmaller than 3.
The first thing we do is to pick the extreme case proposed byuhdypothesis
and which is finite. For example if the null hypothesis is tihatexpected value of
the sample mean is larger than 3, then the extreme case ih¢haexxpected value
is exactly 3. I'm going to represent this extreme case of thiehypothesis agi,

to distinguish it from the more general null hypothesis thatwant to reject. For
example if the null hypothesis say& X | H,, true) < 3 the the extreme case of
the null hypothesis would clairt(X | H, true) = 3.
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1. Formulate the null hypothesis and the extreme hypothesis

2. Compute the value taken by the random varigbées in the two-tailed case,
only in this case use expected values giverfhyyinstead ofH,,.

3. If positive values ofZ are the only ones inconsistent with, and if Z >
1.64 rejectH,,. Report that the results westatistically significant. If neg-
ative values ofZ are the only ones inconsistent with, and if 7 < —1.64
then reject the null hypothesis. Report that the resultstatistically sig-
nificant. Otherwise withhold judgment. Report that the resulese not
statistically significant.

To see that this test also has the desired type | error speeicnote that
P(H, rejected H, true) < P(H, rejected H,true) (7.112)
= P(Z > 1.64) = ®(—1.64) = 1/20 (7.12)

Thus we have proven that the type | error specification is agelr than 1/20,
making the test acceptable from a classical point of view.

Example We want to show that bees prefer red flowers rather than yellow flo
ers. We construct 100 plastic flowers 50 of which are yellow &hde8. Other
than the color the flowers are indistinguishable in appeasand/e then measure
for 200 bees the amount of time they spend in yellow versuawdrs. We find
that 160 out of the 200 bees spent more time in the red flowerthisi€nough
evidence to say that bees prefer red flowers?

We can model the preference of each bee as independent Beraadbm
variables X, ..., X500, Where X; = 1 represents the event that bee number
in the sample spent more time on the red flowers. In our cassaimple mean
takes the following valueX = 160/200 = 0.8. The null hypothesis says that
E(X | H, true) < 0.5. This hypothesis covers an entire range of values so a one
tailed test is appropriate. The extreme case of the null thgsos, symbolized as
H, says that?(X | H, true) = 0.5. Thus,

X =08 (7.13)
E(X|H,) =05 (7.14)
SdX | H,) = SdX; | H,)/V200 = 0.035 (7.15)

708205 716

0.035
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Since positive values of contradictH,, andZ > 1.64 we reject the null hypoth-
esis and conclude that bees prefer red flowers over yelloveftaw

7.2 Reporting the results of a classical statistical test

First let us concentrate on the things you should avoid whporting results:

Avoid statements like “The null hypothesis was” or “The afigive hy-
pothesis was”. These terms are just used to understanddiceutoderlying
statistical tests. You should assume that the readergglkemw about this
logic.

Avoid statements like “The results prove the idea that”, Tiné results dis-
prove the idea that”. As we know, statistical test are natllitfie so scien-
tists avoid strong statements like “prove” and “disprove”.

Avoid statements like “The data shows that very probablyehe a differ-

ence between the experimental and the control groups.ofl. cénnot say
this because we do not know the probability of the null hypsibh. Remem-
ber we are using a classical test and thus the null hypotlsesither true or
false.

Avoid statements like “The results are statistically imsigant”. The word
insignificant is misleading. Simply say that the resultsrasestatistically
significant.

Avoid statements like “The results were very significant’hisl suggests
that your results are very important or that your type | egfecification is
different from that of other scientists. This is misleadsigce you would
have published your results if your test passed with youe tygrror speci-
fication.

7.2.1 Interpreting the results of a classical statistical test

If the results are not significant, it basically means thatdeenot have enough
evidence, for now, to reject the null hypothesis. Here isxam®le interpretation:

There is not enough evidence to support the idea that thelagrsign effect
on the subjects’ reaction time.
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If the results are significant we can say that the data areamstistent with the
null hypothesis. Here are some standard interpretatiosigpificant results. Note
how we avoided strong words like “prove” in favor of softernds like “support”

e The data support the idea that the drug has an effect on thecssilveaction
time.

e The results of this experiment support the idea that drugs<ameeffect on
reaction time.

7.3 The T-test

One major problem with theZ test is that the null hypothesis needs to specify
the value of VafX'). This value is known for Bernoulli random variables, but in
general it is unknown. In such a case, we may estimate thanaiof the mean
using our sample information. To do so first define the samgpimuce as
1 .
S% = X; — X)? 7.17
A= Z( ) (7.17)

note that the sample variance is a random variable. In theAgig to this Chapter
we prove that the sample variance is an unbiased estimake ofatriance of the
observations, i.e.,

E(S%) = Var(X;) (7.18)
Since S% is an unbiased estimate of the variance of the observatises;an

divide it by n to get an unbiased estimate of the variance of the sample.riiéan

represent this estimate 4%
2

S
Sy = —t (7.19)

n
Now remember thel random variable was defined as follows

 X-E(X|H,truey X — E(X|H,true)
~ SdX | H,true  SdX|H,true)/\/n
TheT random variable is very similar to therandom variable except for the fact

that in the denominator it uses an estimate of the variantieeaofnean instead of
the true variance

(7.20)

X —-EBE(X|H,true) X — E(X|H,true)
Sx Sx/v/n

T = (7.21)
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7.3.1 The distribution of T

The distribution of thé” random variable was discovered by William Sealy Gos-
set (1876-1937). Gosset was a chemist and mathematiciuh liyrthe Guinees
brewery in 1899. Brewing is a process in which statisticalysis had great po-
tential since brewers have to deal with variable materiataperature changes and
so on. The story goes that at the end of 18& century scientific methods and
statistical modeling were just beginning to be applied smbng but the methods
available at the time required large numbers of observati@osset had to work
with experiments with small samples, for which theest did not work very well.
As a statistician Gosset liked to do everything startingnfriirst principles and
disliked the use of recipes and tabulations. This gave hieatgilexibility and
power when tackling new problems. He once said “Doing it fist principles
every time preserves mental flexibility”. Gosset was alse®y good carpenter,
an activity to which he also applied his devotion to first pites; he disliked the
use of complicated tools and liked doing as much as possiiteapen-knife. In
1908 Gosset published a paper entitled “The probable efrilleamean”, where
he described the distribution of t¥é random variable, as a statistic applicable
to experiments with small numbers of observations. He phblil this paper un-
der the name “Student”. His desire to remain anonymous gemealtromantic,
unassuming reputation. His theoretical distribution pee&nown as the Student-
distribution, or simply the T-distribution. In fact there &n infinite number of
T-distributions with each member of the family identified by a parameter kmow
as thedegrees of freedon{df). The probability density function df is given by
the following formula:

fT(u) — ﬁ(l + Z_;)—(df—i-l)/Q (7.22)
oo 1.2
K(df) :/ (1+ E)*df“)/? dx (7.23)

In practice, we do not need to worry about the formulafipfu) since the values
for the cumulative distribution

Fr(v) = /U fr(z)dz (7.24)

appears in most statistics textbooks. Figure 3 shows thgestfahe T-distribution
with 1 df. The distribution is bell shaped but it has longelstéhan the Gaus-
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Figure 7.1: The t-distribution with one degree of freedom.

sian distribution. When the number of degrees of freedom g Ma&ge, the T-
distribution closely approximates the Gaussian distidout
7.3.2 Two-tailed T-test

Here is the procedure to perform a two-tailed T-test

1. Figure out the expected value of the sample mean if thehyplbthesis is
true E(X | H, true)

2. Computél’ the value taken b¥’ for your specific sample.

3. Get the degrees of freedom (i.e., number of independesgrestions) in
S. In our case the number of degrees of freedom4s1.

4. Go toT tables forn — 1 degrees of freedom, and compute the valseach
that

P(T > c| H, true) = 1/40 (7.25)

The number is called the critical value.

5. If T & [—c, ] reject the null hypothesis, otherwise withhold judgment.

Example: We get 3 bags of potato chips from a specific brand. The company
that makes these chips says that on average there are 40pehipag. LetX;
measure the number of chips in badn our sample we hav&; = 30, X, = 10
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and.X3; = 20. Do we have enough evidence to reject the idea that on average
are 40 chips per bag?

The null hypothesis is that there are 40 chips per bag. THUS | H,, true) =
40. Moreover

X = (30 + 10 + 20)/3 = 20 (7.26)
_ 2 10 — 2 - 2
52— (30 — 20)% + ( o3 _2;)) (20202 o (7.27)
Sy =1/5%/n = /100/3 = 5.77 (7.28)
20 — 40
T = =—-34 7.2
5.77 346 (7.29)
df =n—1=2 (7.30)
c=4.30 (7.31)

| obtained the critical value = 4.30 using the tables of th€ statistic withdf = 2.
SinceT" € [—4.30,4.30] we withhold judgment. We do not have enough evidence
to reject the null hypothesis.

Proof: This procedure has the correct type | error specificatiotesin

P(H, rejected H, true) = P(T &[—c,¢]) (7.32)
=2P(T > c| H,true) =1/20  (7.33)

Procedure for one-tailed T-test In this case the null hypothesis takes an entire
range. For example, it could say that the expected valueeahtban is smaller than
20, not just 20. As with theZ test | will useH,, to represent the null hypothesis
and H, to represent the extreme case in this null hypothesis. Fampie if the
null hypothesis says that the expected value of the meana#iesrthan 20, then
H, says that the expected value of the mean is exactly equal tbr&0procedure

to test one-tailed hypotheses is as follows

1. Formulate the null hypothesis and the extreme hypothesis

2. Compute the value df anddf as in the two-tailed case, only in this case
use expected values given B, instead ofH,,.

3. Using tables find the valuesuch thatP(7" > ¢ | H,) = 1/20
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4. If positive values of” are the only ones inconsistent with, and if " > ¢
reject H,,. If negative values of" are the only ones inconsistent with,
and if " < —c reject the hypothesis. Otherwise withhold judgment.

For example if we want to show that the consumers are beingtetie Then we
want to reject the hypothesis that the average number o$ ¢hiprger or equal to
40. In such case the null hypothesisfi§éX | H,) > 40. The extreme case of the
null hypothesis say& (X | H,) = 40. Moreover only negative values @f are
inconsistent with the null hypothesis. We go to tables andi tiat for 2 degrees
of freedomP (T > —2.91) = 1/20. SinceT = —3.46 is smaller than-2.91, we
have enough evidence to reject the null hypothesis.

Proof: This procedure has the desired type | error specificatiazesin

P(H, rejected H, true) < P(T & [—c, | | H, true) (7.34)
=2P(T > c| H, true) = 1/20 (7.35)

7.3.3 A note about LinuStats

LinuStats, and some T-tables provide probabilities of theoéute value of’, i.e.,
P(T| > )= P{-T <y U{T>c})=2P(T >¢)  (7.36)

Thus, if you want to obtain the critical valuesuch thatP(7" > ¢) = = then you
need to give LinuStats the val@e:. If you do that LinuStats will give you the
valuec such that

P(|T| > c¢) =2z (7.37)

from which it follows that
P(T>c¢)=2z/2=x (7.38)

which is what you wanted to begin with.

7.4 EXxercises

1. Which of the following is more likely not to belong to a poatibn with
p = 0 ando? = 100. Explain why. (5 points)
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(a) A single subject with a value of 20.

(b) A random, independent sample of 100 subjects with a samphn of
-2.0

(c) Arandom, independent sample of 10000 subjects with gkamean
of 1.0

2. A research team is testing whether newborns have colonvi3ien infants
were tested at the UCSD hospital within their first 3 hours fef IExperi-
menters showed the infants a card with 2 color patches: ré@iaen. The
card was positioned so that the distance between the two patohes was
about 15 degrees of visual angle. Each color patch was airevth a di-
ameter of 7 degrees of visual angle. For half the infants r@glan the right
side, of the card and for the other half red was on the left. sitlge two
colors were calibrated to have equal luminance, so that ¢beyd not be
distinguishable by a black-and-white vision system. Afterental consent
was granted, the infants were tested as follows. Once it easled that the
infant was in an alert state, the card was presented in ffantdher and an
observer recorded, during a 30 second period how long sfanked to the
left and right side of the card. The observer did not know Wweeteft cor-
responded to red or to the green patch. The dependent \awal/the total
time in seconds looking to the red patch minus the time lapkirthe green
patch. The results were as followjs=2, —1,10,8,4,2,11,1, —3,4}.

(a) Formulate the null hypothesis

(b) Should the test be 1-tail or 2-tails?

(c) Do you have enough evidence to reject the null hypotResis

(d) What is the probability that you made a type | error?

(e) What is the probability that you made a type Il error?

() What is the type | error specification?

(9) What is the power specification?

(h) What are the assumptions needed to guarantee a 5% tyjme spec-
ification?

3. You are given 3 randomly selected kittens of the same abeir Weights
are 3, 3 and 2 pounds. Your biology book says that 1 year dieligtweigh
7.0 pounds. Your goal is to prove that these kittens are neit gid.
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(&) What is the null hypothesis?

(b) Do you have enough evidence to say that the kittens arkyesdr old?
(c) What is the probability that you made a type | error?

(d) What is the probability that you made a type Il error?

(e) What is the type | error specification?

() What is the power specification?

(g) What are the assumptions needed to guarantee a 5% tyjme spec-
ification?

7.5 Appendix: The sample variance is an umbiased
estimate of the population variance

Let X1,..., X, be ii.d. random variables with mearx and variancer%. To
ease the presentation | will prove thatS3 ) = o% for the case in whicluy = 0.
Generalizing the proof for arbitrary values pf is mechanical once you know
the proof foruy = 0. First note ifux = 0 then

Var(x;) = B(X: — px)? = B(X2) = 0% (7.39)

Var(X) = E[(X — B(X))? = BE(X?) = %X (7.40)

and sinceX;, X; are independent when# j

Using the definition 05%, and considering that,, . . ., X,, have the same distri-
bution, we get
2 1 . 2 n 2
E(Sy)=—=) EXi—-X)" = BE(X; - X) (7.42)

n—14% n—1

Moreover

2 —

BE(X, — X)? = B(X?) + B(X?) — 2B(X,X) = o2 + %X _2B(X,X) (7.43)
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Finally
_ 1 &
E(X,X) = B(X~ > X)) (7.44)
i=1
1 2 . Ug{
= E(E(Xl) +) E(X1X))) = - (7.45)
=2
Thus
2 n 2 0§< U_%( 2
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Chapter 8

Intro to Experimental Design

The goal of experimentation is to study causal relatiorsHiptween physical
events. Behind every scientific experiment there are indadgland indirectly en-
tire societies trying to figure out whether two or more pheanenare related (e.g.,
are lung cancer and smoking related?, does a drug improvidghexpectancy

of patients?, does an education program help economicaddantaged stu-
dents?). Different experimenters have to tackle issuesfept their disciplines

but generally speaking empirical scientists share manjaddeammon problems:

1) They need to deal with the variability and uncertaintyerdnt in natural data,
2) They need to organize and communicate the obtained dataefficient fash-

ion, 3) They need to make inferences based on limited saroplésta, 4) They

need to design experiments carefully to leave as few passibdrpretations of

the results as possible.

8.1 An example experiment

In this chapter we will discuss general concepts of expertalaesign. For con-
creteness, | will introduce these concepts in relation éftitiowing experiment
which was part of J. Ridley Stroop’s?] doctoral dissertation. Stroop was in-
trigued by the well known fact that it takes longer to nameor®lthan to read
color names (i.e., it takes longer to say that a red patchdghen to read the
word “RED”). Theories of the time proposed explanations Haseinterference
effects and thus Stroop decided to study the effect of ieterf) color names upon
naming colors. The results, which were rather spectacatarnowadays known
as the “Stroop effect”. To accommodate our needs | have nedd#troop’s orig-

81
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inal experiment while maintaining the overall spirit of werk. You can read his
original experiment at the 1935 issue of the Journal of Expantal Psychology

[?].

e Materials:

There were 2 lists of stimuli:

— One list of 100 stimuli each of which consisted of four calpkdet-
ters “XXXX”. The color of the ink varied randomly on each stiius.
These lists were used for the “Neutral” test condition.

— One list of 100 stimuli consisting of color names (e.g. “GREEbuUt
with each word printed with ink of color different from thdttbe color
named by the word. These lists were used for the “Interferétest
condition. The colors used were red, blue, green, brown pample.
The colors were arranged randomly while making sure thatahor ¢
would immediately follow itself. The words were printed agual
number of times on each color (except for the color they ngmed

e Subjects and Procedure

Twenty volunteer college undergraduate students (10 raalkg40 females)
participated in the experiment. All participants were eésindividually.

They were seated near the window so as to have good dayligimiration

from the left side. A ten-word sample of each test was readrbetading
the test the first time. The instructions were to name thersdas they
appeared in regular reading line as quickly as possible arabrrect all

errors. On the signal “Ready! Go!” the sheet which the subjbetd

face down was turned by the participant and read aloud. Thidsmwoere
followed on another sheet by the experimenter and the tinsetaken with
a stop watch to a fifth of a second. Within each sex categorydidahe

participants were randomly assigned to the Neutral camiéind half to
the Interference condition.

e Results

Means and standard deviations of the time it takes to nametli®ali ap-
pear in Table I.
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Sex Neutral Interference

male 111.1 [21.6] 69.2 [10.8]
female 107.5 [17.3] 61 [10.5]

Table 8.1: Mean Time and Standard Deviation [in square latatiper 100 stim-
uli. Time measured in seconds.

8.2 Independent, Dependent and Intervening Vari-
ables

By convention the variables manipulated by the experimesterknown as the
independent variables(e.g, the interference level). The different values of the i
dependent variable are calledatment levels or simplytreatments. For exam-
ple, in Stroop’s experiment the treatments were the “Néudrad “Interference”.
Experiments are designed to test whether the differentdefethe independent
variable have an effect on another variable known asidpendent variable In
Stroop’s experiment the dependent variable is the reattioan

Independent Variabl
(Interference Level) \
Dependent Variable
(Reaction Time)
Intervening Variables
(Temperature, Age,

Mood, ...)

Figure 8.1: Independent and intervening variables havetenpal effect on the
dependent variable.

Intervening variables are variables other than the independent variable that
have a potential effect on the dependent variable. Evergthae are interested
on the relationship between the independent and the depevatéables, in prac-
tice there are many other variables that are also havingfect @n the dependent
variable. For example, the temperature of the room, the &gi@ecsubject, the
particular mood of the subject at test time, may also havefanten the depen-
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dent variable. Some experimenters emphasize the factabre not interested
in the effects of some intervening variables, by callingithriisance variables

Good experimental designs control for all possible inteivg variables so
that the only systematic source of variation that can erpglae results is the in-
dependent variable. If a study is poorly designed and istang variables may
actually explain our results we say that the design lagtesnal validity , or that
it hasconfounding variables For example, if we choose all the subjects in the
neutral condition to be males and all the subjects in thefertence condition to
be females, we would say that sex is a confounding variable design lacks
internal validity and we would not be able to tell whether éfiects on the depen-
dent variable are due to the variable “sex” or to the treatrnenditions (Neutral
vs. Interference).

The art of experimental design consists of making sureveteng variables
distribute in a “fair” fashion amongst the different tre@mh conditions so that
the only systematic differences between the differentineat groups can be at-
tributed to the independent variable. The concept of “fdistribution of the
intervening variables is very tricky and we should returntttater. For now
we’ll just use the concept intuitively and say that when aenvening variable
is distributed in a “fair” fashion amongst the treatmentditions we say that the
variable has beecontrolled. If an intervening variable has been controlled then
it cannot be used to explain away our results. For exampédl, dfur subjects are
females, and we still find a difference between the two néatdthe interference
conditions, clearly sex cannot explain this difference. BYding the sex of all
subjects constant we have controlled its possible effacicientific parlance we'd
say that sex is a controlled variable. Only when all possittkervening variables
are controlled we can proceed to analyze whether the indiemérariableX has
an effect on the dependent variabife In the next section we discuss the most
common methods of control available to scientists.

8.3 Control Methods

1. Holding constant: The idea is simple. We make sure an intervening vari-
able is held constant in all our observations. This disdjeslit as a po-
tential explanation of our results. For example if all setgewere treated
in the same room at the same temperature, it follows thateeatyre can-
not explain the obtained differences between treatmerditons. Holding
constant is a rather dramatic method of control but it hagridblems. For
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example, if we decide to hold “sex” constant by studying omigle sub-
jects, we no longer know whether the results are also appéida female
subjects. In the lingo of experimental design, we say th&dihg things
constant reduces trexternal validity of the experiment. External validity
simply means the power to generalize our results to popuaiiarger than
the specific set of observations obtained in the experineegt, (our ability
to say that the Stroop effect occurs to subjects other thar2@hsubjects
investigated in our experiment).

2. Blocking: The idea in blocking methods is to basically replicate thuel st
with different levels of the blocked intervening variableor example we
may “block” age by categorizing subjects into less than B3Q, 30-40,
40-50, 50-60, more than 60). Then we can systematicallyystuel exper-
imental results within each of the different blocks. An imjamt form of
blocking isblocking by subject, which indicates that we actually block the
variable “subject identity”, thus controlling all intemmg variables, known
and unknown, that make subjects different from each otheeWie block
by subject, each subject is considered as a block and hedsiselgough all
the treatment conditions in the experiment. The idea isudysthe effect
of a treatment within each subject (e.g. study the diffeechetween the
neutral and interference conditions on a subject by sultjasis). In this
case the experiment is said toWwghin subjects, or repeated measuress
opposed tdbetween subjects Within subject designs are a bit trickier to
analyze and thus we will later dedicate them a special chapoe now we
will concentrate on between subject designs.

3. Probabilistic Control: This is by far the most important methods of control
and it is arguably the one form of control that made rigorayseeiments
in the social and biological sciences possible. The fadias ¢ven though
we may try to control for known intervening variables, thei# always be
intervening variables unknown to us that may have a potezffect on our
results. Hey, may be the position of Jupiter at the time ofekgeriment
has an effect on some people’s capacity to complete the btesi. Who
knows?

So here is the problem: How can we possibly control for irdamg vari-
ables we cannot even think of? Scientists have found a vegsnious way
to solve this problem. The trick is to give up equal distribntof inter-
vening variable inspecific experimentsnstead what we maintain equal
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amongst the treatment conditions is girebability distribution of the vari-
able. We think of an ensemble of replications of the sameraxeat and
guarantee that over this entire ensemble, the interverangbies will be
distributed evenly across the different treatment coodgi When we do
that, we say that the intervening variables have bhaadomized.

We have actually seen control by randomization in previoethods even
though | avoided calling it by its name. For example, in cohltry match-
ing we first clustered subjects in attempt to distributerwdaing variable
equally. But since we had differences between the subjedtinmeach
cluster, we then randomly assigned subjects to each treatwoadition.
In completely randomized designsve simply assign subjects randomly to
each condition without any previous matching.

We can think of the subject identity as an intervening vdeiabat includes
all the peculiarities, known and unknown to us, that makd esabject dif-
ferent from everybody else at test time. We then randomieestfects of
all these known and unknown variables by assigning eaclesutgndomly
across the different experimental conditions. For exampéecould put as
many cards in a hat as the number of different treatment dondi Then
we can ask each subject in our experiment to draw a card fdiegthis/her
treatment condition. Note that by using probabilistic cohtexperiments
becomea game of chancethus the importance of probability theory and
statistics in the analysis of experiments.

Note again that randomization does not guarantee equabdisbn of in-
tervening variables in single experiments, however it gotges that on av-
erage, if we were to repeat the same experiment many mang,tthreeinter-
vening variables will be equally distributed among theetdint treatment
groups. Technically speaking, when a variable is randothize say that it

is arandom variable, a mathematical object studied in probability theory
and statistics. We will finish up this chapter with some ukefuncepts.

. Matching: You can think of matching as controlled randomization. For

example, if we simply randomly assign subjects to diffetessatment con-
ditions, it is always possible that in specific experimentseptional sub-
jects accumulate disproportionally in some treatment ttmms. Matching
techniques try to control for these possible imbalancesaridliowing way.
First we cluster cluster our subjects in terms of their saniy with respect
to a particular variable. Each cluster must has as manysistgs treatment
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conditions. For example, if we wanted to “match by age” in 8teoop
experiment, we would put together groups of 2 people of simage. If
we had 4 subjects with ages 18, 49, 30, and 16, we would makestecl
with the younger subjects (18, 16) and another cluster viéhalder sub-
jects (49,30). Once the clusters are formed, subjectsma&ach cluster are
randomly assignedto different treatment groups.

. Statistical Control: In many cases we may not be able to guarantee a uni-
form distribution of the intervening variables but we maieaist try to make
some aspect of the distribution of variables be the samé theatreatment
groups. For example, it would be impossible for the room teragure to
be exactly the same all the time but at least we may want tcagtee than
on average the room temperature was the same across tréatmditions.
We may also want to make sure that the average age of the siisj@about
the same across all treatment groups. Note that equalizergges does not
guarantee equal distributions. For example, treatmentpyfocould have
50 % 5 year old subjects and 50% 35 year old subjects. Groupld bave
just 20 year old subjects. Both groups have the same averagauagbvi-
ously the distribution is completely different. Althoudtig form of control
is rather weak, in some cases it may be all we can do. In sudscas
report in a crystal clear way our method of control and le&ites up to the
scientific community to decide on the validity of our results

8.4 Useful Concepts

1. Experiments vs. Observational studies:

Scientific studies are commonly classified into observalti@md experi-
mental depending on whether the independent variable isredtsonal or
experimental. An independent variableEgperimental if its value is as-
signed by the experimenter to the subjector example if experimenters
assign different subjects different dosages of a drug themtug’s dose is
an experimental variable. The crucial point here is thatetkgerimenter,
not the subjects, decides which treatment each subjectegiive.

INote that being “experimental” is a property of the indeparidvariable, not a property of the
dependent variable. If you want to know whether a study i®arpental you need to focus on the
independent variable; do not worry about the dependerdliviayi
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If an independent variable is not experimental then it idecabbserva-
tional. For example, age does not qualify as an experimental Varsitce
age cannot be assigned to subjects. All experimenters catdalassify
subjects according to their age.

The goal of experimental independent variables is to stadge and effect
relationships (e.g., to establish whether a drug is or isut@neficial to treat
a particular sickness). Observational variables on therdtand can only
be used to study relationships, without establishing caasd effects. For
example, early observational studies about the relatipristtween smok-
ing and cancer showed that smokers tended to have a higleargate than
non-smokers. The dependent variable was whether the siigidcancer.
The independent variable was whether the person smoked.iiNtitis case
the independent variable is observational, since it woaldrethical for ex-
perimenters to force a group of subject to smoke. The exgetiens could
only classify subjects into smokers or non-smokers. Uofaately, the re-
sults of observational studies like this were inconclusinee they could be
due to an intervening variable that is systematically défe between the
two groups. For example highly stressed subjects could aguepensity
to smoke and a higher cancer risk. According to this vievesstr and not
smoking per se, could cause cancer. It could also be the lsassubjects
with cancer have a higher propensity to smoke just becausecatresses
you out. According to this view it is cancer that causes smglki

A classic example of observational studies involves thdyaisof differ-
ences between men and women on some dependent variablesigfsint
Note that since these these studies are observational. WVengsstigate
whether men and women are different on some dependent lea(aly.,
memory, 1Q, or income) but we cannot assess what the causderahe
obtained differences. These causes could be due to tramahles, such as
the fact that on average men tend to be heavier, or they ceuld®to com-
plex socio-political variables (e.g., the underlying cadsr the observed
differences could be that the educational system treatsamérmvomen dif-
ferently causing).

. Exploratory vs. Confirmatory Studies: The distinction between these

two different types of research is somewhat subtle, yet maob. Confir-
matory studies tend to have only a small and well defined seeatments
and behaviors under study. Clear a-priori hypotheses are isiaout what
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to expect in the data and only those a-priori hypothesisested. For ex-
ample, a confirmatory study may investigate whether takingspirin a day
reduces the chances of heart attack. In exploratory sttlthesxperimenters
may have a general idea about what to expect in the data lyuataesvilling
to analyze the data in a very wide variety of ways with the hofpnding
potentially interesting results. Exploratory studies exgeemely important
in science and they are the source in many cases of new uriegpgesults.
However, the results in exploratory studies tend to be inkmive basically
because by analyzing the data in many different ways it isgdypossible
to find some sort of pattern that may just be due to chance. ¥ousee
this effect in sports analysis when all sorts of differemitistics are used
to explain after the fact why a team has lost or won. In geneeslults
of exploratory analysis are treated with caution and attsrape made to
replicate these results with well defined confirmatory expents.

3. Random Assignment vs. Random SelectionThis is a very important
distinction that novices sometimes confuse. Random sefecgfers to
the process of selecting a sample from a population of stjdn many
experiments this selection does not need to be random. Fon@e, in
psychophysical experiments may times the experimentesdifnand his
colleagues are the subjects of the study, and thus they argamalomly
selected”. However these non-randomly selected subjeaysstill be ran-
domly assigned to the different treatment conditions. Ranselection has
an effect on the external validity of the experiment, our pot generalize
to a larger population. Random assignment has an effect antéreal va-
lidity of the experiment, our power to infer that the indegent variable is
the one causing the observed results.

8.5 Exercises

1. The following questions refer to the experiment outliaéthe beginning of
this chapter:

(a) What are the independent and dependent variables?

(b) Find intervening variables that where held constantched and ran-
domized.

(c) Is the experiment experimental or observational? BErpldoy.
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(d) Is the experiment within subjects or within subjects?

2. Design a between subject experiment to test whether laaedistinguish
red from green.

3. Design a between subject experiment to test whether hmeahorns can
tell the difference between male and female faces.

4. Design an experiment to test whether caffeine has an effibe subjective
feeling of Nervousness. Make sure you specify the following

(&) Independent variable and its implementation in thesdiffit treatment
groups.

(b) Dependent variable and how you are going to measure it.
(c) Intervening variables and how you will control them.

5. Consider the following hypothetical experiment inspi@d research by
Baker and Theologu#] on the effects of caffeine on visual monitoring.

The purpose of the was to asses the effect of caffeine on alvisonitor-
ing task that simulated automobile night driving. Subjesdsin a semi-
darkened room approximately 12 oft from a visual display tmasisted of
two 1-inch red lights spaced 6 in. apart. At random intervalging from
1.5 to 3.5 min., the red lights were driven apart at a rate ds@/min
for 30 seconds. The geometry of the viewing condition c@oesled to a
driving situation in which one vehicle followed 60 yd. bethia lead ve-
hicle at night driving. The speed at which the lights sematatimulated
what would be perceived if the lead vehicle reduced its vsiday 0.92
mph. Subjects had to continuously monitor the two red-8grid press a
button whenever they detected any separation of the twslighhe reac-
tion time, from the beginning of the light separation to theiation of the
subject;s response was automatically recorded. Testisgamducted over
a 4-hr period with 20 trials being administered each hour.aftotal of 80
responses per subject. During the 4 hour testing period ama€ld tuned
to a local station was played to avoid excessive sensoryvagon. There
were 10 paid male volunteers drawn from universities in treshihgton
DC area. Average age was 29.91 yrs. Subjects were matchegebie ).
divided into 5 couples with no more than a year differenc&chEmember
of the age-matched couple was randomly assigned to a diffexatment
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group. There were two such treatment groups: 1) A contraljgmf sub-

jects given placebo tablets just before testing began aralistbefore the
end of testing. 2) An experimental group of subjects thatvgéven a tablet
with 200 mg. of caffeine just before testing began, and aerathblet with

200 mg. of caffeine 2 hours before the end of testing. Drugaadebo

tablet administration was conducted according to a dobltel paradigm,

with tablets placed in coded envelopes in a manner unknouhetsubjects
and test administrators.

(&) What are the independent and dependent variables?

(b) Find intervening variables that where held constantched and ran-
domized.

(c) Is the study experimental or observational? Explain.why
(d) Is the study within subjects or within subjects?

6. What is the difference between external and internal Nghd

7. A friend of yours observes that swimmers nicer bodies tither athletes.
She concludes that swimming helps have a good body. Whatisguith
this conclusion? Design an experiment to test your friehgfsothesis.

8. Read the Abstract, Introduction and Methods sectionsepétticle in Ref-
erence P]. Describe the control methods used in the study.
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Chapter 9

Experiments with 2 groups

In this chapter we learn how to apply the T test to experimeitts 2 groups. For
example one group may receive a drug and another group meiyeex placebo.
The form of the test depends on whether the experiment ioqeed with dif-
ferent subjects in each group or whether the same subjextssad for the two
groups. The first type of experiment is calleetween subjectsor randomized.
The second is calledithin subjects or repeated measures

9.1 Between Subjects Experiments

In this case we have two sets of random variables. The firsieseribes measure-
ments in a group of subjects, the second set describes neeasuis in a different
group of subjects. The number of subjects per group is theesanmd we will
represent it with the letten. Thus, the total number of subjects in the experi-
mentis2n. Let X, 4,..., X, , represent the measurements for the first group and
Xo1,..., Xy, represent the measurements for the second groupXLeepre-
sent the average of the observations in the first groupXnthe average of the
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observations in group 2. We thus have

fi=2yox, ©.1)
=1

X, = %Zn:Xzi (9.2)
i=1

Si = nili%@ - X (9.3)

S%, = %Sf (9.4)

S5 = o i 1 g(XQ,i - Xy)? (9.5)

5%, = %SS (9.6)

The null hypothesis specifies the expected value of therdifite between the
sample means of the two groups, i&X, — X | H, true). In most experiments
the null hypothesis says, that this expected value is zexg tihat on average the
two groups are no different. The variable of interest in tase isX, — X;.

We assume that the random variablés,, ..., X;, and the random variables
Xo1,...,Xs, are independent and Gaussian. Moreover we assume that withi
each group all the random variables have the same expedtexl va

E(X11) =FE(X12) == FE(Xu1,) (9.7)
E(Xy1) = E(Yap) =+ = E(Ya,) (9.8)
(9.9)

and that all the random variables have the same variance
Var(X, ;) = --- = Var(X,,,) = Var(X,,) = --- = Var(X,,) = 0% (9.10)

where we do not the value of;. Note in single group experiments the variable of
interest is the sample mean for that group and we use an éstohthe standard
deviation of the sample mean. In two group experiments thda variable of
interest isX, — X3, i.e, the difference between two group means, and thus we
need to come up with an estimate of the standard deviatigiXof- X;). Note
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that sinceX; and.X, are independent ravs
Var(X, — X;) = Var(X,) + Var(—X;) = Var(X,) + Var(X) (9.11)
— 2
= 2Var(X;) = EVar(Xl,l) (9.12)
The last two steps are valid because we assumeXvay = --- = Var(Xs,,).

Thus VafX;) = Var(X,). We can get an umbiased estimate of the variance of
the observations by averagisg andSz. We represent this pooled estimateSds

1
§* = 5(87 +53) (9.13)

An unbiased estimate of the variance of the difference batveéample means is
as follows

2
S% %, = 552 = 5%, + 5%, (9.14)
and theT random variable is defined as follows
. XQ — Xl — E(XQ — Xl ’ Hntrue) . XQ — Xl — E(X2 — Xl ’ HntTU(f)
- S -
Xa—X1 \/S%, + 5%,

T

(9.15)
In this case the number of degrees of freedo(is— 1) sinceSx, x, is based
on2(n — 1) independent observations, i.e.;- 1 independent observations i}
andn — 1 independent observations j.

If H, is true and the assumptions are met, thHéfllows the distribution
described by Gosset, which is available in tables. The phaeeto do one tailed
and two tailed tests is identical as for one group experimpnbvided the new
formulas forT" and fordf are used.

Example A group of 6 migrane patients was gathered and randomly asslign
to one of two conditions. In the experimental group subjecewaren 500 mg of
a new migrane drug whenever they had a migrane access. In titeotgroup
subjects were given two aspirins. One hour after the accebgas were asked
to rank from O to 100 how bad the headache was. 0 meaning, “rereefawhat
headache?”, and 100 meaning “I cant take it anymore”. Theuteswere as
follows

Experimental Group £0, 30, 20]

Control Group =[56, 64, 60]
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First of all we compute the values taken by the relevant ramdariables in our
experiment

X, = (10 + 30+ 20)/3 = 20 (9.16)
X, = (56 4+ 64 + 60)/3 = 60 (9.17)
5% = ((10 — 20)% + (30 — 20)* + (20 — 20)%)/2 = 100 (9.18)
S2 = ((56 — 60)% + (64 — 60)* + (60 — 60)%)/2 = 16 (9.19)

St,-x, = \/100/3+ 16/3 = 6.21 (9.20)

In our case it makes sense to use a one tailed test, since wgiageto reject the
hypothesis that the aspirin works better or equal to the newg.dThus the null
hypothesis tells us that(X, — X, | H, true) < 0. The extreme case, i.e., what
we call H, saysE(X; — X, | H, true) = 0. Thus,

 Xo— X, — E(X,— X, | H, true) (60 —40) — 0

T
S%,_x, 6.21

=322 (9.21)

The number of degrees of freedon(23(3 — 1) = 4. We go to tables and find that
for 4 degrees of freedo (7" > 2.13 | H, true) = 0.05. Thus the critical value is
2.13. Since the value taken lyis larger than 2.13 we have enough evidence to
reject the null hypothesis. We can say that the new drug waeker than aspirin.

9.1.1 Within Subjects Experiments

In the previous experiments we assumed all the measuremergsndependent.
In within subjects experiments this assumption is clearborrect: if we test the
same subjects in the two groups, then the random variablie ifirst group will
be related to the random variables in the second group. ypesdf experiments
are called “repeated measurements” or within subjectdisncase we work with
the differences between the observations obtained in tbeytaups on a subject
by subject basis

D; =Xy, — Xy, (9.22)

and the sample average of the difference would be

1 & _ _
D= EZ;D]- =X, — X, (9.23)
j:
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In most cases the null hypothesis says that there is no eliféers in the expected
values of the two groups, i.e&(D | H,, true) = 0. TheT random variable follows

_ D—E(D|H,true)

T
Sp

(9.24)
This effectively transforms a 2 group experiment into a Ergroup experiment
that can be analyzed with the techniques we saw in the predoapter.

Example Three undergraduate students from UCSD volunteered toquaatie
on an experiment to test the effect of caffeine on reactime.ti Each student
was tested in two different conditions with the tests being regpd in time by
one week. In one condition the subjects drunk a double esprdesthe other
conditions the subjects drunk a double decaffeinated espreThe order of the
two conditions was randomly assigned. On each condition, tigests were
tested 15 minutes after drinking the espresso. Subjectstestex] on a task that
required rapid reaction to a stimulus. The average reactiome in milliseconds
of each subject was recorded. The results were as follows
Caffeine Condition $10, 30, 20]
Decaf Condition =[56, 64, 60]
The first number on each condition corresponds to the firgestissecond num-
ber to second subject and third number to the third subjestthé difference in
reaction time between the two conditions statistically gigant?

This is a repeated measures experiment so the T-test woudddezl on the
difference measurements obtained for each of the threeasbj

Dy =10 — 56 = —46 (9.25)
Dy =30 —64=—34 (9.26)
D3 =20 — 60 = —40 (9.27)
D = (—46 — 34 — 40)/3 = —40 (9.28)
1
5% = 5((62) + (6%) 4+ 0%) = 18 (9.29)
52 =18/3=6 (9.30)
18—0
T=——=135 9.31
NG (9.31)
df =(3—1)8=2 (9.32)

P(T| H, > 291 True) = 1/20 Obtained using T-tables (9.33)
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Thus the critical value is 2.91. Since 7.35 is larger thari 2.Bhe difference in
reaction time between the two groups is statistically gigaint.

9.2 EXxercises

1. A San Diego based biotek company is testing whether a newtdrsig good
effect on amnesia, the inability to remember recently presematerials.
The sample consisted of 8 amnesic patients that volunteéenedrticipate
in the experiment. The subjects were randomly assignedherghe exper-
imental group (drug) or the control group (placebo). Sufsjexere treated
with 125 mg a day of the drug or the placebo for 30 days. After month
Subjects were given a list of 100 training pictures one ate @t 2 second
intervals. Half an hour later subjects were presented 200metures: the
100 training pictures plus 100 new ones. Subjects were askeébcrim-
inate whether the pictures were old or new. The dependerdblarwas
the percentage of correctly discriminated pictures. TBalte in the exper-
imental group were as follow$1, 60,59,60}. The results in the control
group were as follows{50, 51, 50, 49}.

(a) Is the experiment randomized or within subjects?

(b) Specify the null hypothesis if you were to use a two tatkest.
(c) Do you have enough evidence to reject this null hypo#tesi
(d) Specify the null hypothesis if you were to use a one tatibestl
(e) Do you have enough evidence to reject this null hypo#itesi
() What assumptions did you make?

(9) A replication of the same experiment with a differentdam sample
of subjects results in a control group mean of 10 instead 8f B®
you find this surprising? Justify your response.

(h) Repeatthe analysis assuming the same subjects are Ut groups.
For example, Subject 1 gets a score of 61 when he/she takag arfi
a score of 50 when he/she takes the placebo.



Chapter 10

Factorial Experiments

NOTE FROM JAVIER R. Movellan: This chapter may be particyldniggy. Use
at your own risk.

10.1 Experiments with more than 2 groups

In this chapter we will apply the T-test to experiments tingblve more than two
treatment groups. The basic ideas are the same as in simgip gnd two group
experiments. The only difference is that we use informatrom all the groups
to get better estimates of the variance. The experimens&deve will address is
called “between subjects” indicating that each of the trestt groups is made of
different randomly assigned subjects.

Suppose we want to study the joint effects of caffeine anohalton the time it
takes people to respond to a red light. Eight volunteer stisdleom the Cognitive
Science Department at UCSD were randomly assigned to oneauptrieatment
groups: Group 1) Each subject in this group has a non-aleobhekr and a decaf-
feinated coffee. Group 2) Each subiject in this group has eshalic beer and a
decaffeinated coffee. Group 3) Each subject in this grogmhaon-alcoholic beer
and a regular coffee. Group 4) Each subject in this group has@holic beer
and a regular coffee. Each of the 8 subjects in our sample easuned in terms
of the times it took them to do a test that involved pushing@ape response to
ared light. Table?? shows the results of the experiment

Suppose we want to know whether alcohol has an effect on pebat take
regular coffee. In this cases the null hypothesis would béttie alcohol has no
effect, i.e.,
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E(X,— X3 | H, true) =0 (10.1)

whereX; represents the sample mean of groupthe experiment. We could test
this hypothesis restricting our analysis to groups 3 ands Would simply be a
two group experiment that we already know how to analyze. él@wvthere is a
better way to do things. The idea is to use a pooled estimatesofariance based
on the 4 groups, instead of just two groups. The advantageobf @n estimate is
that it is based on more observations. If our experimentltifferent groups, the
pooled estimate would be

1
SQ:a(Sf+S§+S§+---+S§) (10.2)
and it would havea)(n — 1) degrees of freedom. We know
_ _ _ 2
Var(X, — X3) = 2Var(X;) = —Var(Xi ) (10.3)
n
thus our estimate of this variance will be
2 2 2
SX4*X3 — ES (104)
and thel random variable would be
Xél - X3

T = N (10.5)

Table 10.1:
NoAlcohol Alcohol

NoCaf feine | 3 1 7 5
Caffeine | 1 1 10 16




10.2. INTERACTION EFFECTS 101

In our example

X;=6 (10.7)
X, =13 (10.9)
57 = ﬁ((i’) 1 +(1-1?) =2 (10.10)
1
S2 = ﬁ(w —6)2+(5—6)%) =2 (10.11)
1
S2 = ﬁ(a -1+ (1-1*=0 (10.12)
1
S3 = ﬁ((10 —13)2 4 (13 — 16)?) = 18 (10.13)
8223(2+2+0+18):% (10.14)
poB2170 54 (10.15)
211
22
df = 4; (10.16)
we see in tables that
P(T > 2.77| H, true) = 1/20 (10.17)

10.2 Interaction Effects

In many cases it is important to know whether the effect okattnent changes
when administered in combination with other treatments: éxample in many
cases we need to know whether a drug has the same effect whdrineal with
other drugs. This concept is so important that statistegave it a special name:
“interaction effects”. In general, if the effect of a treant changes when com-
bined with other treatments, we say thia¢ treatments interact, or that the ef-
fects arenon-additive. Otherwise we say thdhe treatments are additive or
that there is no interactions.

The simplest experimental design that allows to study wdratteatments in-
teract consists of 4 groups formed by the combination of teattments of one
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factor (e.g., caffeine versus no caffeine) and two treatsnefanother factor (e.g.,
alcohol versus no alcohol). This type of design is calleda2 factorial design.

Now we need to translate the concept of interaction into &ipdestable
hypothesis. Let’s take the example experiment we have aedlgo far. If there
IS no interaction between alcohol and caffeine, then theceff alcohol should
be the same regardless of whether a person takes regulacaifedeated coffee.
We measure the effect of alcohol when combined with decadted coffee as
E(X, — X;) and the effect of alcohol when combined with regular coffee a
E(X, — X3). Thus, if there is no interactions, these two effects havieetthe
same. In other words, The null hypothesis of no interactiteces says that

or equivalently ) B B B
E[Xo+ X3 —X; — Xy | H, trug =0 (10.19)

So the random variable of interestis + X5 — X; — X,. Since we know that
_ — _ — _ 4
Var(Xs + X5 — Xy — Xy) = 4Var(X,) = —Var(X, ) (10.20)
n

then our estimate of the standard deviatiorkgf+ X3) — X; — X, is

4
St getita = =5 (10.21)

n
and it haga)(n — 1) degrees of freedom. THE random variable follows

 Xo+ X3 - Xy — Xy — E(Xy — Xy | H, true)

: T (10.22)
In our example,
6+1—-2-13
= = 241 10.23
(4/2)(11/2) ( )
2f =2 -1) =4 (10.24)

For 4 df the critical value is 2.71 and thus we do not have ehawdence to
reject the null hypothesis. We cannot say that alcohol affdina interact.



Chapter 11

Confidence Intervals

NOTE FROM JAVIER: This chapter has not been properly debugyse at your
own risk.

In this chapter we study a method to bracket expected valmssdon sample
information. We may want to bracket expected values of thanma a group
, or the difference between sample means of two groups, datitfegence of the
difference between sample means of 4 groups (we’'d do so tgzaniateractions).
In all cases the basic ideas are the same. While hypothesisgtesid interval
estimation are closely related, the later method is in gdmeore informative for
the following two reasons: 1) Classical hypothesis testingsdnot tell us the
probability that our decisions be correct. Classical irdkestimation does tell us
about this. 2) Classical interval estimation methods areegsrelate to Bayesian
methods so they provide a better foundation for a way of amadyexperiments
consistent with classical and Bayesian approaches.

We will see an example of interval estimation using the dedenfan experi-
ment we used in a previous chapter. Here is a re cap of theimgdrat hand:

Suppose we want to study the joint effects of caffeine andalloatthe time it
takes people to respond to a red light. Eight volunteer sttgifom the Cognitive
Science Department at UCSD were randomly assigned to one ofréaiment
groups: Group 1) Each subject in this group has a non-alcmhioker and a de-
caffeinated coffee. Group 2) Each subject in this group haaleoholic beer and
a decaffeinated coffee. Group 3) Each subject in this graagdnon-alcoholic
beer and a regular coffee. Group 4) Each subject in this grbap an alcoholic
beer and a regular coffee. Each of the 8 subjects in our sampke measured
in terms of the times it took them to do a test that involvedimgsa pedal in
response to a red light. Tab®? shows the results of the experiment
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Suppose we are interested in bracketing the valug(df;). To do so consider
the following7T" random variable

X - B(X)
Sz,

Note that now we do not condition on the null hypothesis béing. We simply

treatF(X3) as a fixed, yet unknown number. Thus, since we are using tiheator

expected valu€l’ will follow Gosset’s t-distribution. In previous chaptesg saw
that for this particular experiment,

T (11.1)

Xy=1 (11.2)
S? =11/2 (11.3)
df =4 (11.4)
c=2.77 (11.5)

wherec was obtained using T-tables so thatl" > c¢) = 1/40. Moreover. since
X3 is based on two observations

Sg, = /S2/2 =/(1/2)(11/2) = 1.65 (11.6)
Now notice the following,
P(—c<T <¢)=0.95 (11.7)
= peeg X B aL8)
Sz,
= P(—cSg, < X3 — E(X3) < cSg,) (11.9)
= P(—X3—cSg, < —FE(X3) < —X3+¢Sx,) (11.10)
= P(X3+cSx, > BE(X3) > ¢X3 — cSx,) (11.11)
(11.12)
Table 11.1;

NoAlcohol Alcohol
NoCaf feine | 3 1 7 5
Caffeine | 1 1 10 16
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Now lets define the random variablésand U to represent the upper and lower
limits of our intervals,

L = X3 — ¢Sy, (11.13)
U= X3+ cSx, (11.14)
(11.15)
We have learned that )
P(E(X3) € [L,U]) =0.95 (11.16)

In other words, there is a 95 % chance that the random intétval], will cover
the true value of?(X3). Note that the intervalL, U] is random, i.e., it changes
with the outcome of the experiment, aff{ X;) is not random, i.e., it is a fixed
yet unknown number.

Example In our experiment,

L=X;—cSg, =1—(2.77)(1.65) = 3.57 (11.17)
U=X;—cSg, =1+ (2.77)(1.65) = 5.57 (11.18)

In our particular experiment, the confidence interval fofX3), the expected
value of the mean of the third group, [8.57,5.57] we do not know whether
in this particular experiment the confidence interval besaskhe expected value,
however we know that in 19/20 experiments, the proceduresee will be cor-
rect.
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Appendix A

Useful Mathematical Facts

1. Symbols

(a) = “Is defined as”
(b) n! “n-factorial”

1 ifn=20
"= {(1)(2)(3) () a0 A
(c) Sterling’s approximation
n! ~ 27rn(ﬁ)” (A.2)

(d) e =2.718281828 - - -, the natural number
(e) In(z) = log,(z) The natural logarithm

() 14 The indicator (or characteristic) function of the skt It tells us
whether or not an element belongs to a set. It is defined asafg)|
14:Q—{0,1}.

(A.3)

ne 1 forallwe ANQ
CU g
A 0 forallwe AcNQ

Another common symbol for the indicator function of the dat ¢ 4

2. The Greek alphabet
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(A.4)

(A.5)

(A.6)

(A.7)

108 APPENDIX A. USEFUL MATHEMATICAL FACTS
A « alpha I iota P »p rho
B [ beta K k kappa ¥ o sigma
' v gamma A X Ilambda T tau
A ¢ delta M pu mu T o upsilon
E ¢ epsilon N v nu d ¢ phi
Z (¢  zeta = £ Xi X x chi
H n eta O o omicron U 9 psi
© 60 theta I =« pi 2 w omega
3. Series
1
142484 4n= 0D
0 1 2 no1_ L—a”
a+a +a" +---+a =
1—a
l+a+a®>+---=-——forja| <1
1—a
2 3 _ a
a+ 2a° 4 3a +-~—m,for0<a< 1

n=0
2zt
COS(z):1_§+I_
, B 3 b
sm(x)—x—§+a—

[E7

e/ = cos(x) + jsin(x) wherej=+v/—1

(A.8)

(A.9)

(A.10)

(A.11)
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4. Binomial Theorem

(a+b)" = Y (")w-m b (A.12)

(”)éL (A.13)

(m!) (n —m)!

Note from the binomial theorem it follows that

on (3) N (T) T (Z) (A.14)

where

5. Exponentials

=1 (A.15)
am+n =a™ a” (A16)

1
at=— (A.17)

an
(ab)" = a"b" (A.18)

6. Logarithms

qloga(@) — . (A.19)
log, (7 y) = log,(z) + log,(y) (A.20)
log,(z¥) = ylog,(z) (A.21)

log, (1) =0 (A.22)
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log,(a) =1

log,(r) = (log,(x))/ log,(a)

7. Quadratic formula
The roots of the equatiom? + bz + ¢ = 0 are

—b+ Vb2 — 4dac
xr=
2a

8. Factorizations

a® —b* = (a —b)(a+ )

9. Trigonometry

tan(a) = 3)27((3))

sin?(a) + cos?(a) = 1
sin(a + 3) = sin(«) cos(f) + cos(a) sin([)

cos(a + (3) = cos(a) cos() — sin(a) sin(3)

tan(z) + tan(y)

tan(Oé + 6) = 1+ tan<x) tan(y)
10. Hyperbolics
sinh(z) = ‘ _26
cosh(z) = - +2€_

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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sinh(z)

tanh(z) = cosh(z)

(A.34)

11. Complex Numbers

We use the conventiofp&/—1. There are three ways to represent a com-
plex number

(a) Cartesian representation
v = (T, 1) = T + ju; (A.35)

wherez, andzx; are the real and imaginary components:of

(b) Polar representation:

|z| 24/ 22 + 22 (A.36)

)

is called the magnitude af.

/r2arc tans (A.37)
Ty

is called the phase af.

(c) Exponential representation
z = |z|e?“" = |z|(cos(Lz), sin(Lx)) (A.38)
Operation on complex numbers:

(a) Addition/Substraction:

(e, i) + Y, i) = (T + Yy Ti + Ys) (A.39)

(b) Multiplication

|(zy)| = |zly| (A.40)
Llry) = Lx + Ly (A.41)
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(c) Conjugation
The complex conjuage of = (z,,z;) IS = (¢, —x;). Note|z| =
|z| andZ(z) = —Z(z).

(d) Inner Product

Letx = (x1,---,2,) andy = (yi,...,y,) be complex vectors (i.e.,
each component af and ofy is a complex number). The inner prouct
of x andy is defined as follows

<z y>=x-y= ingi (A.42)
=1
12. Derivatives
Lety = f(x)
dy .
L= lim (f(a+ M) = f(2)/Aa (A.43)

Here are some alternative representations of the demvativ

v dy d o df(x) d _ df(u)
fla)=y = dr  dz’ " dr dxf(x)  du & (A.44)
e Exponential:
d
. exp(z) = exp(z) (A.45)
e Polynomial:
ixm = ma™ ! (A.46)
dx
e Logarithm
d 1
—Inzx =— (A.47)
dx x
e Sine P
—sinx = cosw (A.48)
dz
e Cosine
d :
— COST = — SINT (A.49)

dx
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e Linear combinations

(@)f () + 0)g(e) = () (@) + () og(e)  (ASO)
PO ) ), d
x)g(x g(x x
DD _ ) D () L0 (a51)
e Chain Rule

Lety = f(z) andz = g(y)
dy —dzdy

A.52
dr dy dz ( )

You can think of the chain rule in the following way: changesy
which changes. How muchz changes whem changes is the product
of how muchy changes when changes times how muchchanges
wheny changes. Here is a simple example that uses the chain rule

dexp(ax) dexp(ar)azr
T P exp(az)(a) (A.53)

13. Indefinite Integrals

The indefinite integral of the functionf is a function whose derivative is
f (i.e., the antiderivative of ig). This function is unique up to addition of
arbitrary constant. The expression

/ [z )+ C (A.54)

means that”’(z) = f(x). TheC reminds us that the derivative &f(x)
plus any arbitrary constant is algox).

e Linear Combinations
/af(a:) + bg(x)dx = a/f(x)da: + b/g(:z:)d:z: (A.55)

e Polynomials

xm—i—l o 5
Mdx = A5
/a: T= + ( )
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e Exponentials

/exp(x)dx =exp(xz) +C (A.57)
e Logarithms
1
/ —dr =In(x) + C (A.58)
T

e Integration by parts

/ f(@)g (x)dx = f(x)g(x) - / f@)g(x)de  (A59)

The formula for integration by parts easily follows from tfeemula
for the derivative of the product gf(z)g(x).

History

e The first version of this document was written by Javier R. Miavein
1994. The document was 6 pages long.

e The document was made open source under the GNU Free Do@atimoent
License Version 1.1 on August 9 2002, as part of the Kolmoggroject.



Appendix B
Set Theory

Intuitively we think of sets as collections of elements. Tdmacial part of this
intuitive concept is that we are willing to treat sets asteattidistinguishable from
their elements. Sometimes we identify sets by enumerafitrea elements. For
example, we may talk about the set whose elements are theemsimi2 and3.

In mathematics such sets are commonly represented by emipthe elements

of the set using curly brackets. For example, the{de®, 3} is the set whose
elements are the numbets 2 and3. Sometimes sets are defined using some
property that identifies their elements. In such case it sauary to represent
the sets using the following formula

{z : = has a particular proper}y (B.1)

For example, the sdtl, 2, 3} can be represented as

{z : x is a natural number smaller thd#. (B.2)

The intuitive concept of sets as collections of elementsseful but it can only
take us so far. You may complain that we have not really defimealt a set is
since we have not defined collections and we have not spewrhatiqualifies as
an element. We have not specified either what qualifies aspegyo Consider
for example the propositiofiz : = is not an element of}, i.e., the set of sets
which are not elements of themselves. We can prove by cadati@u that such
a set does not exist. Let's assume that this set exists amdeptesent it with
the symboly. If y is an element of; then, since all the elements gfare not an
element of themselves it follows thatis not an element of. Moreover, ify is
not an element of then,y must be an element gt In other words, if we assume
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the sety exists we get a contradiction. Therefore we have to condluale; does
not exist. Using similar reasoning one can also show thasé¢hef all sets does
not exist either (see proof later in this document). But thises deep questions:

1. What does it mean to say that a set exists or does not existexemple
Leopold Kronecker, a German mathematician born in 1823meld that
the only numbers that assuredly exist are the natural nwsmie?,3 ...).
According to him the set of real numbers are just a fantasydbas not
exist. But think about it, what criteria, other than authgrdan we use to
decide whether the natural numbers or the real numberexist

2. How can we tell whether something is or is not a set?

3. What are valid elements of a set?

Axiomatic set theory was developed to provide answers th guestions. In
axiomatic set theory:

1. A set exists if the proposition that asserts its existaadegically true.
Moreover within this theory there are only sets so if a forofgkct is not a
set, it does not exist.

2. If the assumption that an object exists leads to a comtiadiwe can assert
that that object does not exist, or equivalently, that itdsanset.

3. There are no atomic elements: An object exists if and dritys a set. Of
course sets can have elements but those elements must bleesetelves
otherwise they would not exist.

One “annoying” aspect of axiomatic set theory is that setote a logical
abstraction detached from our everyday experience wittecodns of physical
objects. You should think of mathematical sets as logichje¢ots” which are part
of a formal structure. Within this theory to say that an obgdsts is the same as
saying that it is a set. To say that an object does not exiseisame as saying that
it is not a set. Everyday collection of physical objects andanger sets in this
theory and thus they do not exist. While this approach makesyrou as peculiar,
it turns out to be extremely powerful and in fact it has becdhe foundation
of mathematics. The formal structure of set theory whileepehdent from the
physical world provides very useful tools to model the watdelf. The key is to
develop set structures constrained in ways that mirromgiséeroperties of the
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physical world. For example, the properties of the set otirztnumbers (i.e.,
1,2,3,...) mirrors our experience counting collections of physidajkots.

Axiomatic set theory is a first order logical structure. Eosder logic works
with propositions, i.e., logical statements constructedoading to the rules of
logic and that can take two values. For convenience we cafieghwo values
“True” and “False”. Set theory, and thus the entire body oftmamatics reduces
to logical propositions that use the following elements:

1. Variables (e.g4q,b, ... z,y, z) which stand for sets.

2. The predicates, which stands for element inclusion. For example, if the
proposition(z € y) takes the value true, we know that botlandy are sets
and thatr is an element of. For example, the proposition

{1.2,3} e {{1,2},{4,5},{1,2,3}} (B.3)
takes the value “True”.
3. Logical operators

(a) =P, where— is the logical “negation” operator.

(b) P A P, whereA is the logical “and” operator.

(c) PV P,whereV is the logical “or” operator.

(d) P — P, where— is the logical “implication” operator.
(e) P— P, where« is the logical “bijection” operator.

() VzxP is the logical “for-all” quantifier.

(g) JzP is the logical “exists” quantifier.

The names of the different operators (i.e., “negation” d"afior”, “implication”
...) are selected for convenience. We could have given tlempletely different
names, all we really need to know is how they operate on propos.

All propositions in set theory are built out of atomic projiass of the form
(x € y) connected using the logical operatorsPland( are propositions, e.g.,
P could be(z € y) and@ could be(y € z ) then-P, PAP, PV Q P — Q,
P—Q,VxP anddx P are also propositions.

The effect of the connectives on the truth value of proposgiis expressed
in Table??. Thus, if the propositiorP takes value “True” and the propositigh
takes the value “False” then the propositidh A @) takes the value “False”. The
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Pl|Q|-P|PAQ|PVQ|P—Q|P=Q
T|T| F | T T T T
TIF|F| F T F F
FIT|T| F T T F
FIF| T| F F T T

Table B.1: The truth tables of the logical operators. T stdad$True” and F for
“False”.

propositionsvz P anddz P tell us thatx is a variable that can take as value any
formal object that qualifies as a set. It also tells us thas a proposition whose
truth value depends an. For exampleP could be(xz € y) vV (z € z), where

y and z are fixed sets and acts as a variable. The propositign P takes the
value “True” if P takes the value “True” for all sets. The propositienP takes
the value “True” if there is at least one set for whichtakes the value “True”.
Remember when we say for all sets we do not mean sets of phydijeadts. In
fact we still have to define what we mean by set.

B.1 Proofs and Logical Truth

Sometimes we treat propositions as formulas whose trutevdépends on the
truth values taken by variables in the proposition. For g¥enit P and( are
propositional variables then the A @ is a propositional formula whose truth
value depends on the specific truth values take® laynd(). We say that a propo-
sitional formula islogically true if for all valid combinations of truth values of
the elements in the formula, the formula can only take thee/dlfrue”. For
example for the formul@P v —P) there is only two valid combination of truth
values forP and—P: “True, False” and “False, True”. In both case the formula
(P V (—P)) takes the value “True” and thus we say that it is logicallyetr&im-
ilarly if a propositional formula can only take “False” valsl we say that it is
logically false For examplg P A (—P)) is logically false. Aproof is a process
that shows a propositional formula is logically true.
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B.2 The Axioms of Set Theory

To simplify the presentation of axiomatic set theory | wileu‘pseudocode”, i.e.,
a combination of logical propositions, mathematical sylmpand English state-
ments. | do so under the understanding that all these statero@n be written as
pure logical propositions.

| will use the symbok in propositions of the forniz ¢ y) as an alternative
notation to—(x € y). | will use the formula

Iz : P} (B.4)
as an alternative notation to the propositional formula
JyVa P (B.5)

This formula simply says that there is a set of elements ttegfg the proposition
P. If the formula takes the value “True” then the symbfis: P} refers to a set
that make the propositioviz P “True”. When a setr makes the propositio®
true, | will say thatr satisfiesP. For example the sétsatisfies the propositional
formula(z € {1,2}).

In set theory all existing objects are sets. If an objecttexiss a set otherwise
it does not exist. To remind us of the fact that sets includenehts we sometimes
refer to sets as a collection of sets, or as a families of §étis is just a “human
factors” trick since the theory makes no distinction betwsets, families, collec-
tions or elements. In axiomatic set theory elements, dadles, and families are
just sets.

Axiomatic set theory is commonly presented using 9 reduna@oms, which
are the foundation of all mathematical statements.

B.2.1 Axiom of Existence:

An axiom is a restriction in the truth value of a propositiorhe axiom of exis-
tence forces the proposition

IyVz(x &€ y) (B.6)

to take the value “True”. We call call the sets that satigfyr ¢ y) empty sets
Thus the axiom of existence tells us that there is at leaseomgy set, we will
see later that in fact there is only one empty set.



120 APPENDIX B. SET THEORY

B.2.2 Axiom of Equality:

This axiom is also called the axiom of extensionality ancettites the predicate
“=". For mnemonic convenience when the propositien= y) takes the value
“True” we say that the sets andy are equal. In order to define how the symbol
“="works it is convenient to create a new predicate, which wiesyimbolize as
C. The new predicate works as follows: For all se@ndv if the proposition

Ve(r € u) — (v € v) (B.7)

is true then the propositiotu. C v) is true. For mnemonic convenience if the
proposition(u C v) takes the value “True” we say thats a subset of.

The axiom of equality says that if the proposition C v) A (v C u) is true
then the propositioiiu = v) is true. In other word, the proposition

Vu(u € z—u € y) — (=) (B.8)

takes the value “True”. The formula: # y) is used as an alternative notation to
—(z = y). We will now use the axiom of equality to prove that there ityame
empty set.

Theorem: The empty set is unique.

Proof: Letx andy be empty sets, them € y andu € x are always false for
all setsu. Thus(u € y«—u € z) is true for all sets; and since by the axiom of
equality

Vu(u € x—u €y)) — (z=1y) (B.9)

is true then it follows thatz = y) must be true. Hereafter we identify the empty
set with the symbols or alternatively with the symbd]}.

n

B.2.3 Axiom of Pair:

So far set theory has only given us one set: the empty set. Xibenaof pair
brings new sets to life. The axiom of pair says that &éndy exist (i.e., if they are
sets) there also exists a set whose only elements arely. We will represent
such set agz, y}. The axiom of pair forces the proposition

VaVyH z,y} (B.10)
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to take the value “True”. The set made out of the setsda is symbolized as
{a,a} or {a} and is called the singleton whose only element.isSo starting
with the empty sep, it follows that the se{ @} exists. Note thay and{<} are

different since the first has no element and the second haslement, which is
the empty set.

Ordered pairs: The ordered pair of the seisandy is symbolized(z, y) and
defined as follows

(z,y)={{z} {=, y}} (B.11)

where2 stands for “equal by definition”.

Exercise: Prove that two ordered paifs, b) and(c, d) are equal if and only if
a = bandc = d.

Ordered sequences: Letxq,...,z, be sets. The ordered sequefieg . .., z,)
is recursively defined as follows

(1, xn) = (1, ,Tpo1), Tn) (B.12)

Exercise: Prove that two n-tuples paifg., ..., a,) and(by,...,b,) are equal
if and only if a; = b; anday = b, and ...a,, = b,,.

B.2.4 Axiom of Separation:

This axiom tells us how to generate new sets out of elemerds @ixisting set.
To do so we just choose elements of an existing set that ywatigkoposition.
Consider a propositiol® whose truth value depends on the setand v, for
example,P could be(u € v). The axiom of separation forces the proposition

Iz (x € u) A P} (B.13)

to take the value “True” for all setg v and for all propositiong’ with truth values
dependent om andw.
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Fact: There is no set of all sets.
The proof works by contradiction. Assume there is a set adetls, and call it.
Then by the axiom of separation the following sehust exist

r={zx:(xeu)A(z &)} (B.14)
and sincgx € u) is always true, this set equals the set
{z:zdx} (B.15)
Then(r €)r<—(r ¢ r) which is a logically false proposition. Thus the set of all

sets does not exist (i.e., it is not a set).

Intersections: The intersection of all the sets in the setor simply the inter-
section ofs is symbolized as\s and defined as follows:

Ns={z:Vy((yes)—(xey))} (B.16)

For example, ifs = {{1,2,3},{2,3,4}} thenns = {2,3}. The axiom of sepa-
ration tells us that ifs exists thems also exists. We can then use the axiom of
equality to prove thats is in fact unique. For any two setsandy, we represent
their intersection as N y and define it as follows

rNy=N{z,y} (B.17)
For example, ift = {1,2,3} andy = {2, 3,4} then

zNy=n{{1,2,3},12,3,4}} = {2,3} (B.18)

B.2.5 Axiom of Union:

It tells us that for any set we can make a new set whose elements belong to
at least one of the elements of We call this new set the union aof and we
represent it asiz. For example, ifc = {{1,2},{2,3,4}} thenuz = {1, 2, 3,4}.
More formally, the axiom of union forces the proposition

VsdU s (B.19)
to be true. HereJs is defined as follows

Us2{z: y(y € s) A (z € )} (B.20)
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For example, it = {{1,2,3},{2,3,4}} thenuz = {1, 2, 3,4}. Using the axiom
of equalityux can be shown to be unique. For any two seédy, we define the
union of the two sets as follows For example,

{1,2,3} U {2,3,4} = {1,2,3,4} (B.21)
rUy= U {x,y} (B.22)

B.2.6 Axiom of Power:

This axiom tells us that for any setthe set of all subsets af exists. We call
this set the power set of and represent it &8(z). More formally, the axiom of
power forces the proposition

Vs3{z :x C u} (B.23)
to take the value “True”. For example,df= {1, 2} then
Pls) = {{1}, {2}, 2,{1,2}}. (B.24)

Cartesian Products: The Cartesian product of two setsandv, is symbolized
a x b and defined as follows

axb={(z,y): (x€a)N(y€b)} (B.25)

Using the axioms of separation, union and power, we can shatwte y exists
because it is a subset §¥(3(z U y)). Using the axiom of identity we can show
that it is unique.

Functions: A function f with domainu and targeb is a subset of, x v with
the following property: If(a,c) and (b, c) are elements of thena = b. More
formally, if the proposition

VaVbve(((a,c) € f) A((b,c) € f) = (a=1)) (B.26)

takes the value “True” then we say that the gé&t a function.
The following formulae are alternative notations for thensegoroposition:

(z,y) € f (B.27)
y=f(z) (B.28)
z— f(z) (B.29)

Ty (B.30)
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B.2.7 Axiom of Infinity:
This axiom forces the proposition

AsVe(z € s) — ({z,{z}} € 39) (B.31)
to take the value “True”. In English this axiom tells us thare is a set such
that if z is an element of then the paifz, {«}} is also an element of Sets that
satisfy the proposition

Va(z € s) — ({z, {z}} € s) (B.32)

are called inductive (or infinite) sets.

Natural numbers: The natural numbers plus the number zero are defined as the
intersection of all the inductive sets and are construcsddliows:

0= {3} (B.33)
12 {0 {0}y = {1 {1 (B.34)
2 = {L{ = {3 A {0 (B.35)

The axiom of existence in combination with the axiom of irtfinguarantee
that these sets exist. Note that the symHolX - - - are just a mnemonic conve-
nience. The bottom line is that numbers, and in facts all seésjust a bunch of
empty curly brackets!

B.2.8 Axiom of Image:

Let f : u — v be afunction (i.e, a subset ofx b). Define the image of underf
as the set of elements for which there is an elementwhich projects into that
element. We represent that set/ag:). More formally

Tp(u) = {y - Fe(z € u) A (f(2) = y)} (B.36)

The axiom of image, also called the axiom of replacemeris, tesl that for all sets
v and for all functionsf with domainu the set/;(u) exists.
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B.2.9 Axiom of Foundation:

This axiom prevents the existence of sets who are elemethewiselves.

B.2.10 Axiom of Choice:

This axiom tells us that every set with no empty elements lud®ee function. A
choice function for a setis a function with domain and such that for eache s
the function takes a valug(x) € = which is an element of. In other words, the
function f picks one element from each of the sets;jrthus the name “choice
function”. For example, For the set= {{1,2,3},{2,5},{2,3}} the function
f:s—{1,2,3} such that

f({1,2,3}) =3 (B.37)
f({2,5}) =2 (B.38)
f({2,3}) =2 (B.39)

is a choice function since for each setdrthe functionf picks an element of
that set. The axiom of choice is independent of the othemasja.e., it cannot be
proven right or wrong based on the other axioms. The axiansgttem presented
here is commonly symbolized as ZFC (Zermelo-Fraenkel ptiema of Choice),
the axiomatic system without the axiom of choice is commaginbolized as ZF.

History

e The first version of this document was written by Javier R. Miavein
1995. The document was 8 pages long.

e The document was made open source under the GNU Free Doatmoent
License Version 1.1 on August 9 2002, as part of the Kolmogproject.



126 APPENDIX B. SET THEORY



History

e The first version of this document was written by Javier R. Miavein
1996.

e Javier taught an undergraduate course on Probability apdrifmental De-
sign at the Department of Cognitive Science at UCSD. He ussditigu-
ment as the main textbook in 1996, 1997, and 1998.

e The document was made open source under the GNU Free Doatioent
License Version 1.1 on August 9 2002, as part of the Kolmogeproject.
At the time of the release the document had 128 pages andiettltne
following Chapters: (1) Probability; (2) Random Variable8) Random
Vectors; (4) Expected Values; (5) The precision of the arglic mean; (6)
Introduction to Statistical Hypothesis Testing; (7) Imtuztion to Classic
Statistical Tests; (8) Introducation to Experimental Das(9) Experiments
with 2 groups; (10) Factorial Experiments; (11) Confidenderkals; (12)
Appendix I: Useful Mathematical Facts; (13) Appendix Il:tS&eory.

e October 9, 2003. Javier R. Movellan changed the license tolGEP and
included an endorsement section.

127



