Package: afni-atlases Source: afni-data Version: 0.20180120-1.1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 109419 Homepage: http://afni.nimh.nih.gov Priority: extra Section: science Filename: pool/main/a/afni-data/afni-atlases_0.20180120-1.1_all.deb Size: 98215048 SHA256: b7b30ce4345671d92cb08f939b76de42f81a6839abe3d47dba1db0620fe64e0c SHA1: 792d6506cc866acfa54fc71475f823e686f169f7 MD5sum: deaddf5e6992face9b5edeb62644187c Description: standard space brain atlases for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provide AFNI's standard space brain templates in HEAD/BRIK format. Package: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 224 Depends: neurodebian-popularity-contest, python3-datalad (= 0.17.5-1~nd+1), python3-argcomplete (>= 1.12.3), python3:any Suggests: datalad-container, datalad-crawler, datalad-neuroimaging Homepage: https://datalad.org Priority: optional Section: science Filename: pool/main/d/datalad/datalad_0.17.5-1~nd+1_all.deb Size: 187092 SHA256: dcfab5ab31ab85c685b4439648c3095efb236b34c92eb2f870fc1376dd0dbab1 SHA1: e8a088bc96e73f10444588eede93689410943c07 MD5sum: a4020bc221d05979fe1738d432660717 Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) Package: debian-handbook Version: 6.0+20120509~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23215 Depends: neurodebian-popularity-contest Homepage: http://debian-handbook.info Priority: optional Section: doc Filename: pool/main/d/debian-handbook/debian-handbook_6.0+20120509~nd+1_all.deb Size: 21998670 SHA256: b33f038d8363175473cc056a5f98fc7af52386a466b45d4b2e42d2f25233a3ed SHA1: 7a0b369b4548a3f4fb61aa1ef9efa2ddf2b319e2 MD5sum: 3e3d2cf990fcc5ed1ed6bdbfb5c1c3dd Description: reference book for Debian users and system administrators Accessible to all, the Debian Administrator's Handbook teaches the essentials to anyone who wants to become an effective and independent Debian GNU/Linux administrator. . It covers all the topics that a competent Linux administrator should master, from the installation and the update of the system, up to the creation of packages and the compilation of the kernel, but also monitoring, backup and migration, without forgetting advanced topics like SELinux setup to secure services, automated installations, or virtualization with Xen, KVM or LXC. . The Debian Administrator's Handbook has been written by two Debian developers — Raphaël Hertzog and Roland Mas. . This package contains the English book covering Debian 6.0 “Squeeze”. Package: fail2ban Version: 0.8.10-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 728 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), lsb-base (>= 2.0-7) Recommends: iptables, whois, python-pyinotify Suggests: python-gamin, mailx, system-log-daemon Homepage: http://www.fail2ban.org Priority: optional Section: net Filename: pool/main/f/fail2ban/fail2ban_0.8.10-1~nd11.04+1_all.deb Size: 134634 SHA256: 9e820378175fc5a5c54693624d271859c355e190f158a79754e0d2126ee14cde SHA1: e9e2ca5322f2f038264fd1887dc530c6d26188c9 MD5sum: 33f1fcf7e25f5e1bdb6ca5a6d96d2990 Description: ban hosts that cause multiple authentication errors Fail2ban monitors log files (e.g. /var/log/auth.log, /var/log/apache/access.log) and temporarily or persistently bans failure-prone addresses by updating existing firewall rules. Fail2ban allows easy specification of different actions to be taken such as to ban an IP using iptables or hostsdeny rules, or simply to send a notification email. . By default, it comes with filter expressions for various services (sshd, apache, qmail, proftpd, sasl etc.) but configuration can be easily extended for monitoring any other text file. All filters and actions are given in the config files, thus fail2ban can be adopted to be used with a variety of files and firewalls. Package: freeipmi Version: 1.1.5-3~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 0 Depends: neurodebian-popularity-contest, freeipmi-common, freeipmi-tools, freeipmi-ipmidetect, freeipmi-bmc-watchdog Homepage: http://www.gnu.org/software/freeipmi/ Priority: extra Section: admin Filename: pool/main/f/freeipmi/freeipmi_1.1.5-3~nd11.04+1_all.deb Size: 934 SHA256: d1579ba48aed1f9bd263073af0308463c0568250dd60955c4918b60e2e4c6e73 SHA1: 4214237b971851c04c89c19b6aaee5f9f37894fc MD5sum: 00068ce69e03414c73889aa851f20478 Description: GNU implementation of the IPMI protocol FreeIPMI is a collection of Intelligent Platform Management IPMI system software. It provides in-band and out-of-band software and a development library conforming to the Intelligent Platform Management Interface (IPMI v1.5 and v2.0) standards. . This meta-package depends on all separate modules of freeipmi. Package: freeipmi-common Source: freeipmi Version: 1.1.5-3~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 472 Pre-Depends: dpkg (>= 1.15.7.2~) Depends: neurodebian-popularity-contest Suggests: freeipmi-tools Homepage: http://www.gnu.org/software/freeipmi/ Priority: extra Section: admin Filename: pool/main/f/freeipmi/freeipmi-common_1.1.5-3~nd11.04+1_all.deb Size: 296938 SHA256: 3c4fd8502ed44592672b80185d19472e926f68a30e258a80247992230d111560 SHA1: e740f624c5f925720c5cc5ee36b8cb692f54b082 MD5sum: ce62945e56c568f1a9b0698fbe2720b7 Description: GNU implementation of the IPMI protocol - common files FreeIPMI is a collection of Intelligent Platform Management IPMI system software. It provides in-band and out-of-band software and a development library conforming to the Intelligent Platform Management Interface (IPMI v1.5 and v2.0) standards. . This package provides configuration used by the rest of FreeIPMI framework and generic documentation to orient the user. Package: fslview-doc Source: fslview Version: 4.0.1-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3112 Depends: neurodebian-popularity-contest Homepage: http://www.fmrib.ox.ac.uk/fsl/fslview Priority: optional Section: doc Filename: pool/main/f/fslview/fslview-doc_4.0.1-2~nd11.04+1_all.deb Size: 2346540 SHA256: f209434b66491411b995fb2597b88d4c3b0479eb9dabebf85c282c5aca23a2c1 SHA1: 852d9588c8d98406009472628da703e51327d5e7 MD5sum: fdbdf33351a3df3c9912d9839abf4b47 Description: Documentation for FSLView This package provides the online documentation for FSLView. . FSLView is part of FSL. Package: git-annex-remote-rclone Version: 0.5-1~ndall+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23 Depends: neurodebian-popularity-contest, git-annex | git-annex-standalone, rclone Homepage: https://github.com/DanielDent/git-annex-remote-rclone Priority: optional Section: utils Filename: pool/main/g/git-annex-remote-rclone/git-annex-remote-rclone_0.5-1~ndall+1_all.deb Size: 7842 SHA256: 0b1d65c740ce1073ecdae6db121d304fe02c4bb95df552326894118a65b38319 SHA1: 34a2323c4387e61c4a69617150c463f9a7b772c5 MD5sum: 00c5a0407a998eba72d4f5eb0ad71189 Description: rclone-based git annex special remote This is a wrapper around rclone to make any destination supported by rclone usable with git-annex. . Cloud storage providers supported by rclone currently include: * Google Drive * Amazon S3 * Openstack Swift / Rackspace cloud files / Memset Memstore * Dropbox * Google Cloud Storage * Microsoft One Drive * Hubic * Backblaze B2 * Yandex Disk . Note: although Amazon Cloud Drive support is implemented, it is broken ATM see https://github.com/DanielDent/git-annex-remote-rclone/issues/22 . Package: gmsl Version: 1.1.3-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 96 Depends: neurodebian-popularity-contest, make Homepage: http://gmsl.sourceforge.net/ Priority: optional Section: devel Filename: pool/main/g/gmsl/gmsl_1.1.3-2~nd11.04+1_all.deb Size: 16310 SHA256: c78abd79945a3db0ecd96a109bf718e9258c2df4eb84f4d80d0239dfff93b49e SHA1: e9cc466726d81f4cb68884f7658eab849e1c0c08 MD5sum: d8085277dabe46885a5cbef46ab6f951 Description: extra functions to extend functionality of GNU Makefiles The GNU Make Standard Library (GMSL) is a collection of functions implemented using native GNU Make functionality that provide list and string manipulation, integer arithmetic, associative arrays, stacks, and debugging facilities. . Note that despite the name of this project, this library is NOT standard and is NOT written or distributed by the GNU project. Package: golang-github-ncw-rclone-dev Source: rclone Version: 1.41-1~ndall0 Architecture: all Maintainer: Debian Go Packaging Team Installed-Size: 2492 Depends: golang-bazil-fuse-dev, golang-github-aws-aws-sdk-go-dev, golang-github-mreiferson-go-httpclient-dev, golang-github-ncw-go-acd-dev, golang-github-ncw-swift-dev, golang-github-pkg-errors-dev, golang-github-pkg-sftp-dev, golang-github-rfjakob-eme-dev, golang-github-skratchdot-open-golang-dev, golang-github-spf13-cobra-dev, golang-github-spf13-pflag-dev, golang-github-stacktic-dropbox-dev, golang-github-stretchr-testify-dev, golang-github-tsenart-tb-dev, golang-github-unknwon-goconfig-dev, golang-github-vividcortex-ewma-dev, golang-golang-x-crypto-dev, golang-golang-x-net-dev, golang-golang-x-oauth2-google-dev, golang-golang-x-sys-dev, golang-golang-x-text-dev, golang-google-api-dev Homepage: https://github.com/ncw/rclone Priority: optional Section: devel Filename: pool/main/r/rclone/golang-github-ncw-rclone-dev_1.41-1~ndall0_all.deb Size: 399416 SHA256: 528b53f3312375d31d5cebb95472a57272cf242e14a92cfdf99c45be2ff5511d SHA1: 75f8871fd668e815023267a857b37ad60b9d1c2f MD5sum: a87865eafe10185420838e2e4ffd7b55 Description: go source code of rclone Rclone is a program to sync files and directories between the local file system and a variety of commercial cloud storage providers. . This package contains rclone's source code. Package: guacamole Version: 0.6.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 344 Depends: neurodebian-popularity-contest, guacd (>= 0.6), guacd (<< 0.7) Recommends: libguac-client-vnc0 Suggests: tomcat6 | jetty Homepage: http://guacamole.sourceforge.net/ Priority: extra Section: net Filename: pool/main/g/guacamole/guacamole_0.6.0-1~nd11.04+1_all.deb Size: 275498 SHA256: a2f6796935e555594f6aff7d2cb3d88e4782f45fa075c115204d71987008c6f9 SHA1: 68455f3f2434a553a66f04213099df969696ee63 MD5sum: 44096bb567a8b09fe04b075190e885f2 Description: HTML5 web application for accessing remote desktops Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. Package: guacamole-tomcat Source: guacamole Version: 0.6.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 24 Depends: neurodebian-popularity-contest, debconf, guacamole, tomcat6, libguac-client-vnc0, debconf (>= 0.5) | debconf-2.0 Homepage: http://guacamole.sourceforge.net/ Priority: extra Section: net Filename: pool/main/g/guacamole/guacamole-tomcat_0.6.0-1~nd11.04+1_all.deb Size: 3938 SHA256: fa0bc017ff0d776e72ff367b9ceda72a7c809915734ae36abaf3c0eb33ffe9d6 SHA1: bba32bcf12f2e6f8ba73a759fa88e9e8d5174d4c MD5sum: a820ae140599e8d4b1fd5ea896630b0b Description: Tomcat-based Guacamole install with VNC support Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. . This metapackage depends on Tomcat, Guacamole, and the VNC support plugin for guacamole. Guacamole is automatically installed and configured under Tomcat. Package: impressive Version: 0.10.3+svn61-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 356 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-opengl, python-pygame, python-imaging, poppler-utils | xpdf-utils (>= 3.02-2), perl Recommends: pdftk Suggests: ghostscript, latex-beamer Conflicts: keyjnote (<< 0.10.2r-0) Replaces: keyjnote (<< 0.10.2r-0) Provides: keyjnote Homepage: http://impressive.sourceforge.net/ Priority: optional Section: x11 Filename: pool/main/i/impressive/impressive_0.10.3+svn61-1~nd11.04+1_all.deb Size: 155894 SHA256: ae7a68ce74d94fef568098c84d954fa0906fd51b6c82bd631aba7b4cc93f1804 SHA1: 3e1af6c3efddc7c8bf551fbbe859846d20e38d6d MD5sum: b1df55e4c06b1be0e30694ae1458a6ff Description: PDF presentation tool with eye candies Impressive is a program that displays presentation slides using OpenGL. Smooth alpha-blended slide transitions are provided for the sake of eye candy, but in addition to this, Impressive offers some unique tools that are really useful for presentations. Some of them are: * Overview screen * Highlight boxes * Spotlight effect * Presentation scripting and customization Package: incf-nidash-oneclick-clients Source: incf-nidash-oneclick Version: 2.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 36 Depends: neurodebian-popularity-contest, python (>= 2.5.0), python-dicom, dcmtk, python-httplib2 Homepage: http://xnat.incf.org/ Priority: extra Section: science Filename: pool/main/i/incf-nidash-oneclick/incf-nidash-oneclick-clients_2.0-1~nd11.04+1_all.deb Size: 9664 SHA256: 476c535d8943eb938b35a8e65e47a4b2646f1e5443d6d7237f665a752ba2603d SHA1: 3e3f62712d1730074a587cf8af38329d5992ce48 MD5sum: 184c37775c1c83319cef97cd9b860ff5 Description: utility for pushing DICOM data to the INCF datasharing server A command line utility for anonymizing and sending DICOM data to the XNAT image database at the International Neuroinformatics Coordinating Facility (INCF). This tool is maintained by the INCF NeuroImaging DataSharing (NIDASH) task force. Package: libfreenect-doc Source: libfreenect Version: 1:0.1.2+dfsg-6~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 592 Depends: neurodebian-popularity-contest Homepage: http://openkinect.org/ Priority: extra Section: doc Filename: pool/main/libf/libfreenect/libfreenect-doc_0.1.2+dfsg-6~nd11.04+1_all.deb Size: 89398 SHA256: 094a6343ffe26c301daa99d2c043c6341b32a671ff06b5db95aa09f3c8a8738b SHA1: 53eb0feb7dbee47587b62871c61f0590c23301df MD5sum: 73e0df6d0713669e506c2649edcb3d0c Description: library for accessing Kinect device -- documentation libfreenect is a cross-platform library that provides the necessary interfaces to activate, initialize, and communicate data with the Kinect hardware. Currently, the library supports access to RGB and depth video streams, motors, accelerometer and LED and provide binding in different languages (C++, Python...) . This library is the low level component of the OpenKinect project which is an open community of people interested in making use of the Xbox Kinect hardware with PCs and other devices. . This package contains the documentation of the API of libfreenect. Package: libjs-underscore Source: underscore Version: 1.1.6-1+deb7u1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 104 Depends: neurodebian-popularity-contest Recommends: javascript-common, libjs-jquery Homepage: http://documentcloud.github.com/underscore/ Priority: optional Section: web Filename: pool/main/u/underscore/libjs-underscore_1.1.6-1+deb7u1~nd11.04+1_all.deb Size: 32216 SHA256: f61567fd7a16a59adc5cb5061812159c9707f38d3cab108fe080b55b63ea7252 SHA1: 65a3f4f68a7361a340e41f1cd7c232da826edc7e MD5sum: 0840d885d068df7ba4a78349bc543231 Description: JavaScript's functional programming helper library Underscore is a utility-belt library for JavaScript that provides a lot of the functional programming support that you would expect in Prototype.js (or Ruby), but without extending any of the built-in JavaScript objects. It's the tie to go along with jQuery's tux. . Underscore provides 60-odd functions that support both the usual functional suspects: map, select, invoke - as well as more specialized helpers: function binding, javascript templating, deep equality testing, and so on. It delegates to built-in functions, if present, so modern browsers will use the native implementations of forEach, map, reduce, filter, every, some and indexOf. Package: matlab-support-dev Source: matlab-support Version: 0.0.19~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16 Depends: neurodebian-popularity-contest Conflicts: matlab-dev (<= 0.0.14~) Replaces: matlab-dev (<= 0.0.14~) Priority: optional Section: devel Filename: pool/main/m/matlab-support/matlab-support-dev_0.0.19~nd11.04+1_all.deb Size: 7222 SHA256: 7051b986fb2d8c018eed2f2594c88836159be034ec1ffe514c24c57e259359cf SHA1: 0f5921b63d6b32c93d7fc81638d3115bc1ee3d6e MD5sum: a0ff9ea5fd43180e9273f8d90bf0f2ba Description: helpers for packages building MATLAB toolboxes This package provides a Makefile snippet (analogous to the one used for Octave) that configures the locations for architecture independent M-files, binary MEX-extensions, and their corresponding sources. This package can be used as a build-dependency by other packages shipping MATLAB toolboxes. Package: neurodebian-desktop Source: neurodebian Version: 0.31~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 272 Depends: ssh-askpass-gnome | ssh-askpass, desktop-base, gnome-icon-theme, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-desktop_0.31~nd11.04+1_all.deb Size: 115308 SHA256: 8ce4040d93c347330d1baaa970c2918c07b25a4b896533cc3383cdd86eef05c7 SHA1: e57441899d8a08e57d73a73a76d6cf60e5ac19e4 MD5sum: 3830766e1b9615aab878a7418489cb7e Description: neuroscience research environment This package contains NeuroDebian artwork (icons, background image) and a NeuroDebian menu featuring most popular neuroscience tools automatically installed upon initial invocation. Package: neurodebian-dev Source: neurodebian Version: 0.31~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6200 Depends: devscripts, cowbuilder, neurodebian-keyring Recommends: python, zerofree, moreutils, time, ubuntu-keyring, debian-archive-keyring, apt-utils Suggests: virtualbox-ose, virtualbox-ose-fuse Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-dev_0.31~nd11.04+1_all.deb Size: 5351204 SHA256: 6603e3466bb2c225e5f5bcc31b12e2c3d79148b5020944a55b4a026cde8ce346 SHA1: 66a62c25ef3a75eccab4754851b21bc9cdce3031 MD5sum: dab6b846e0d9b25560b45820a1308671 Description: NeuroDebian development tools neuro.debian.net sphinx website sources and development tools used by NeuroDebian to provide backports for a range of Debian/Ubuntu releases. Package: neurodebian-guest-additions Source: neurodebian Version: 0.31~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 148 Pre-Depends: virtualbox-ose-guest-utils, virtualbox-ose-guest-x11, virtualbox-ose-guest-dkms Depends: sudo, neurodebian-desktop, gdm | lightdm, zenity Recommends: chromium-browser, update-manager-gnome, update-notifier Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-guest-additions_0.31~nd11.04+1_all.deb Size: 15190 SHA256: 50df4571fd054cb89f99893e0a47147b79d7e156e23c749a3dce5f18fd86c747 SHA1: 12038deba00bd443500ce6b225ce68f302fc300c MD5sum: 3e835bfb70fa8afc9ab04367ce41b92d Description: NeuroDebian guest additions (DO NOT INSTALL OUTSIDE VIRTUALBOX) This package configures a Debian installation as a guest operating system in a VirtualBox-based virtual machine for NeuroDebian. . DO NOT install this package unless you know what you are doing! For example, installation of this package relaxes several security mechanisms. Package: neurodebian-keyring Source: neurodebian Version: 0.31~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 20 Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-keyring_0.31~nd11.04+1_all.deb Size: 7490 SHA256: a27325fb783f2fb859ec2fa89219fc432f6a366d1973dd0133c55c27e9ee00aa SHA1: 5d185cbfd02cc6307bf3aa61c375836c084a4546 MD5sum: 85aefbabc49984ab2e5af98d8eddc37a Description: GnuPG archive keys of the NeuroDebian archive The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-popularity-contest Source: neurodebian Version: 0.31~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16 Depends: popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-popularity-contest_0.31~nd11.04+1_all.deb Size: 6710 SHA256: 3c515e0d5c4810af3a0e593b174938a64aaeabb29f998387ac456e89e4614259 SHA1: 9c0acee0fe1d1e06babc74146f588ec9cb0fbe9a MD5sum: ed1822a459bdeb013f91161cdbcd2130 Description: Helper for NeuroDebian popularity contest submissions This package is a complement to the generic popularity-contest package to enable anonymous submission of usage statistics to NeuroDebian in addition to the popcon submissions to the underlying distribution (e.g. Debian or Ubuntu) popcon server. . Your participation in popcon is important for following reasons: - Popular packages receive more attention from developers, bugs are fixed faster and updates are provided quicker. - Assure that we do not drop support for a previous release of Debian or Ubuntu while are active users. - User statistics could be used by upstream research software developers to acquire funding for continued development. . It has an effect only if you have decided to participate in the Popularity Contest of your distribution, i.e. Debian or Ubuntu. You can always enable or disable your participation in popcon by running 'dpkg-reconfigure popularity-contest' as root. Package: nifti2dicom-data Source: nifti2dicom Version: 0.4.5-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 652 Depends: neurodebian-popularity-contest Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/nifti2dicom-data_0.4.5-1~nd11.04+1_all.deb Size: 614942 SHA256: c8ad96e34099488d6a35ac6a68afc0c203ca4b990a538531b9763ec25636f9ea SHA1: 517cc41491f6f300fa192cbe538a05da8de60993 MD5sum: 01b860c8bcef0ceb8bcc0b23a6369b3d Description: data files for nifti2dicom This package contains architecture-independent supporting data files required for use with nifti2dicom, such as such as documentation, icons, and translations. Package: nuitka Version: 0.4.5+ds-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2180 Depends: neurodebian-popularity-contest, g++-4.6 (>= 4.6.1) | g++-4.5 | g++-4.4 | clang (>= 3.0), scons (>= 2.0.0), python-dev (>= 2.6.6-2), python (>= 2.7.1-0ubuntu2) Recommends: python-lxml (>= 2.3), python-qt4 (>= 4.8.6) Suggests: ccache Homepage: http://nuitka.net Priority: optional Section: python Filename: pool/main/n/nuitka/nuitka_0.4.5+ds-1~nd11.04+1_all.deb Size: 441106 SHA256: b82ba152709314169efa9171d3a0c56fad596914fa742e856b7dd9818c8f1ec8 SHA1: 1c7aeedb40ff7991b232f5edbc5e2a85203c89bd MD5sum: 9d936da9782c84c26b3cc29b3373412a Description: Python compiler with full language support and CPython compatibility This Python compiler achieves full language compatibility and compiles Python code into compiled objects that are not second class at all. Instead they can be used in the same way as pure Python objects. Package: packaging-tutorial Version: 0.8~nd0 Architecture: all Maintainer: Lucas Nussbaum Installed-Size: 1550 Priority: extra Section: doc Filename: pool/main/p/packaging-tutorial/packaging-tutorial_0.8~nd0_all.deb Size: 1488332 SHA256: 491bc5917f698fee06888998e8a295a6caac2950148bb160b457aff72437eadb SHA1: c5d75d04b01f681ead660ce8d8fe068ab887fba0 MD5sum: 8fbf7c362fd4091a78c50404eb694402 Description: introduction to Debian packaging This tutorial is an introduction to Debian packaging. It teaches prospective developers how to modify existing packages, how to create their own packages, and how to interact with the Debian community. In addition to the main tutorial, it includes three practical sessions on modifying the 'grep' package, and packaging the 'gnujump' game and a Java library. Package: psychopy Version: 1.76.00.dfsg-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6252 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-pyglet | python-pygame, python-opengl, python-numpy, python-scipy, python-matplotlib, python-lxml, python-configobj Recommends: python-wxgtk2.8, python-pyglet, python-pygame, python-openpyxl, python-imaging, python-serial, python-pyo, libavbin0, ipython Suggests: python-iolabs, python-pyxid Homepage: http://www.psychopy.org Priority: optional Section: science Filename: pool/main/p/psychopy/psychopy_1.76.00.dfsg-1~nd11.04+1_all.deb Size: 3177712 SHA256: 5015b91dd4d6491798378c1fab880ef7e249c089147985202a8ce74bb00d2bb5 SHA1: 0d5d59e3ae0ebf75d0a9998a69933d9aae9c3abc MD5sum: 8467143ff25b137aeaf258bce0d25209 Description: environment for creating psychology stimuli in Python PsychoPy provides an environment for creating psychology stimuli using Python scripting language. It combines the graphical strengths of OpenGL with easy Python syntax to give psychophysics a free and simple stimulus presentation and control package. . The goal is to provide, for the busy scientist, tools to control timing and windowing and a simple set of pre-packaged stimuli and methods. PsychoPy features . - IDE GUI for coding in a powerful scripting language (Python) - Builder GUI for rapid development of stimulation sequences - Use of hardware-accelerated graphics (OpenGL) - Integration with Spectrascan PR650 for easy monitor calibration - Simple routines for staircase and constant stimuli experimental methods as well as curve-fitting and bootstrapping - Simple (or complex) GUIs via wxPython - Easy interfaces to joysticks, mice, sound cards etc. via PyGame - Video playback (MPG, DivX, AVI, QuickTime, etc.) as stimuli Python-Version: 2.6, 2.7 Package: psychtoolbox-3-common Source: psychtoolbox-3 Version: 3.0.11.20130711.dfsg1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 57212 Depends: neurodebian-popularity-contest Recommends: subversion Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-common_3.0.11.20130711.dfsg1-1~nd11.04+1_all.deb Size: 19883570 SHA256: e7c158fad0b754440de4436e5cf9ede8ac0076e341fe89ec0e74ebeeeea69951 SHA1: 3cbc841434cd6c8ffada5a8ab6c1a13775abf53d MD5sum: bff7394318fd2384add331257c529900 Description: toolbox for vision research -- arch/interpreter independent part Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains architecture independent files (such as .m scripts) Package: python-brian Source: brian Version: 1.4.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2928 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-brian-lib (>= 1.4.1-1~nd11.04+1), python-matplotlib (>= 0.90.1), python-numpy (>= 1.3.0), python-scipy (>= 0.7.0) Recommends: python-sympy Suggests: python-brian-doc, python-nose, python-cherrypy Homepage: http://www.briansimulator.org/ Priority: extra Section: python Filename: pool/main/b/brian/python-brian_1.4.1-1~nd11.04+1_all.deb Size: 549150 SHA256: 25db00dfa255dc56be9a56f44db413671a4075abd9700ecb3699df3abbc7b117 SHA1: 43e4ffd89892b5a131424dc4e0089f70e107d11f MD5sum: 9083bd74832c78018c6dc1f6e99e922c Description: simulator for spiking neural networks Brian is a clock-driven simulator for spiking neural networks. It is designed with an emphasis on flexibility and extensibility, for rapid development and refinement of neural models. Neuron models are specified by sets of user-specified differential equations, threshold conditions and reset conditions (given as strings). The focus is primarily on networks of single compartment neuron models (e.g. leaky integrate-and-fire or Hodgkin-Huxley type neurons). Features include: - a system for specifying quantities with physical dimensions - exact numerical integration for linear differential equations - Euler, Runge-Kutta and exponential Euler integration for nonlinear differential equations - synaptic connections with delays - short-term and long-term plasticity (spike-timing dependent plasticity) - a library of standard model components, including integrate-and-fire equations, synapses and ionic currents - a toolbox for automatically fitting spiking neuron models to electrophysiological recordings Package: python-brian-doc Source: brian Version: 1.4.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7944 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-brian Homepage: http://www.briansimulator.org/ Priority: extra Section: doc Filename: pool/main/b/brian/python-brian-doc_1.4.1-1~nd11.04+1_all.deb Size: 2222590 SHA256: 3acbbfeb88337a94185faa0d87b9c10a19171436aff15d7c216b807308488051 SHA1: c8d1f0253899d445bdcf8d20f17fa63899b91049 MD5sum: 74327fbb9fc133f1ac755f55578dc7e8 Description: simulator for spiking neural networks - documentation Brian is a clock-driven simulator for spiking neural networks. . This package provides user's manual (in HTML format), examples and demos. Package: python-dicom Source: pydicom Version: 0.9.7-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2036 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-numpy, python-imaging Suggests: python-matplotlib Homepage: http://code.google.com/p/pydicom/ Priority: optional Section: python Filename: pool/main/p/pydicom/python-dicom_0.9.7-1~nd11.04+1_all.deb Size: 425492 SHA256: 39ea78bba0aa724fbd116e023b4c3219fbe8f9093997f6c3604e751cf3c662e3 SHA1: c591c64a012249704b2ef2401edb4382e3cee8d9 MD5sum: ea96ffebd4a401124dd83c4b0ad102bb Description: DICOM medical file reading and writing pydicom is a pure Python module for parsing DICOM files. DICOM is a standard (http://medical.nema.org) for communicating medical images and related information such as reports and radiotherapy objects. . pydicom makes it easy to read DICOM files into natural pythonic structures for easy manipulation. Modified datasets can be written again to DICOM format files. Package: python-dipy Source: dipy Version: 0.6.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2664 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-dipy-lib (>= 0.6.0-1~nd11.04+1) Recommends: python-matplotlib, python-vtk, python-nose, python-nibabel, python-tables Suggests: ipython Provides: python2.6-dipy, python2.7-dipy Homepage: http://nipy.org/dipy Priority: extra Section: python Filename: pool/main/d/dipy/python-dipy_0.6.0-1~nd11.04+1_all.deb Size: 1586440 SHA256: 237b70d413bb6fe8e7d229051d588026b9178530fa445ac4380a4f0de2cf42bf SHA1: 271ec13ae12646e5fc31b232fc42e013f8a9b996 MD5sum: 8122e57828b87e4adc2db227c6506ec7 Description: toolbox for analysis of MR diffusion imaging data Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. It features: - Reconstruction algorithms, e.g. GQI, DTI - Tractography generation algorithms, e.g. EuDX - Intelligent downsampling of tracks - Ultra fast tractography clustering - Resampling datasets with anisotropic voxels to isotropic - Visualizing multiple brains simultaneously - Finding track correspondence between different brains - Warping tractographies into another space, e.g. MNI space - Reading many different file formats, e.g. Trackvis or NIfTI - Dealing with huge tractographies without memory restrictions - Playing with datasets interactively without storing Python-Version: 2.6, 2.7 Package: python-dipy-doc Source: dipy Version: 0.6.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5288 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-dipy Homepage: http://nipy.org/dipy Priority: extra Section: doc Filename: pool/main/d/dipy/python-dipy-doc_0.6.0-1~nd11.04+1_all.deb Size: 3588744 SHA256: 62f73500fa422cfc2670a7ff6b35509761e83272ac8e92e1f23198ff86452f07 SHA1: e671fb48fed5bbe0e229c7d44fe8e499b13a63af MD5sum: c6251f9928a73530774a12732315ec8b Description: toolbox for analysis of MR diffusion imaging data -- documentation Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. . This package provides the documentation in HTML format. Package: python-joblib Source: joblib Version: 0.6.5-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 252 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Recommends: python-numpy, python-nose, python-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python-joblib_0.6.5-1~nd11.04+1_all.deb Size: 52648 SHA256: aeaf05278b8d81efd852cf208be6b1363732e7b6f8e3f2f30f303f0f8a3586ee SHA1: b029eaa41c404212cee50a003ffdb40cd598babd MD5sum: 8bffe2c1c3f43319d13437d15fcef86c Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. Package: python-lazyarray Source: lazyarray Version: 0.1.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 40 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Homepage: http://bitbucket.org/apdavison/lazyarray/ Priority: optional Section: python Filename: pool/main/l/lazyarray/python-lazyarray_0.1.0-1~nd11.04+1_all.deb Size: 7434 SHA256: 406466499e0bc085da82ed8c52f44c0d3923019fcbd6cb8d6488e4353828019d SHA1: 9981902e387971ec03dbd4213cae64843ae940a1 MD5sum: 7dfc493b2e0805c3d3a6e140ecf43e68 Description: Python module providing a NumPy-compatible lazily-evaluated array The 'larray' class is a NumPy-compatible numerical array where operations on the array (potentially including array construction) are not performed immediately, but are delayed until evaluation is specifically requested. Evaluation of only parts of the array is also possible. Consequently, use of an 'larray' can potentially save considerable computation time and memory in cases where arrays are used conditionally, or only parts of an array are used (for example in distributed computation, in which each MPI node operates on a subset of the elements of the array). Package: python-mdp Source: mdp Version: 3.3+git6-g7bbd889-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1920 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Recommends: python-scipy, python-libsvm, python-joblib, python-scikits-learn | python-sklearn, python-pp Suggests: python-py, shogun-python-modular Enhances: python-mvpa Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python-mdp_3.3+git6-g7bbd889-1~nd11.04+1_all.deb Size: 484402 SHA256: be6700b7773bacec9aaa83d9c4a996459990eac1b18a288344ab92358d74f8a0 SHA1: 59387c249383e293f4b0713cb0fe154c2f4d8919 MD5sum: c0639a57a9d4abff3347539a17a8a7ba Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 2. Package: python-mvpa Source: pymvpa Version: 0.4.8-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4092 Depends: neurodebian-popularity-contest, python (>= 2.5), python-numpy (<< 1:1.6), python-numpy (>= 1:1.5.1), python-support (>= 0.90.0), python2.7, python-mvpa-lib (>= 0.4.8-1~nd11.04+1) Recommends: python-nifti, python-psyco, python-mdp, python-scipy, shogun-python-modular, python-pywt, python-matplotlib, python-reportlab Suggests: fslview, fsl, python-nose, python-lxml, python-openopt, python-rpy, python-mvpa-doc Provides: python2.6-mvpa, python2.7-mvpa Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa/python-mvpa_0.4.8-1~nd11.04+1_all.deb Size: 2193322 SHA256: bb14ed8aafad29298d799b356ef1bf683e76243fd25eed3e56642c3eda7271e8 SHA1: c8244e845665a986bba5ba278533e01efbd0ce0d MD5sum: 63d524d59c8ad7d9b7184cb40ce58f97 Description: multivariate pattern analysis with Python PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, GNB, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. Python-Version: 2.6, 2.7 Package: python-mvpa-doc Source: pymvpa Version: 0.4.8-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 40768 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-mvpa Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa/python-mvpa-doc_0.4.8-1~nd11.04+1_all.deb Size: 8474824 SHA256: 7810175fa14490cd1307eb000af584a1a105b619952516f6569c9b2b43636cd7 SHA1: 1c90b3a310d08ba85badfba9bad86a58e850665b MD5sum: 1beb40b5ec3c0b23af75be364d5914b5 Description: documentation and examples for PyMVPA PyMVPA documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation * BibTeX references file . Additionally, all example scripts shipped with the PyMVPA sources are included. Package: python-mvpa2 Source: pymvpa2 Version: 2.1.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4800 Depends: neurodebian-popularity-contest, python (>= 2.4), python-numpy (>= 1:1.5.1), python-numpy (<< 1:1.6), python-support (>= 0.90.0), python-mvpa2-lib (>= 2.1.0-1~nd11.04+1) Recommends: python-h5py, python-lxml, python-matplotlib, python-mdp, python-nibabel, python-psutil, python-psyco, python-pywt, python-reportlab, python-scipy, python-sklearn, shogun-python-modular, liblapack-dev Suggests: fslview, fsl, python-mvpa2-doc, python-nose, python-openopt, python-rpy2 Provides: python2.6-mvpa2, python2.7-mvpa2 Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa2/python-mvpa2_2.1.0-1~nd11.04+1_all.deb Size: 2354506 SHA256: 03df71a492623d1c09e727ce1f9f4bd9b3638ff7aa607d23a172bae2787e1266 SHA1: 7602ddb72a30eb29f611450859639ed534fc3a8d MD5sum: e683816705b1046a49577e8bbe9f30ac Description: multivariate pattern analysis with Python v. 2 PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. . This is a package of PyMVPA v.2. Previously released stable version is provided by the python-mvpa package. Python-Version: 2.6, 2.7 Package: python-mvpa2-doc Source: pymvpa2 Version: 2.1.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 25204 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-mvpa2 Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa2/python-mvpa2-doc_2.1.0-1~nd11.04+1_all.deb Size: 4909390 SHA256: bbc45384823756db5f7e6729c293720c9799a7ce3ece01e88e2daa856a06827b SHA1: fc926ae98c2fdbe0f003974ca7df5e2dc4c28675 MD5sum: d5d5ed616f7e146aedd134a38fc5a2d2 Description: documentation and examples for PyMVPA v. 2 This is an add-on package for the PyMVPA framework. It provides a HTML documentation (tutorial, FAQ etc.) as well as example scripts. Package: python-neo Source: neo Version: 0.2.0-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2492 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy (>= 1:1.5.1), python-numpy (<< 1:1.6), python-quantities (>= 0.9.0~) Recommends: python-scipy (>= 0.8~), python-tables (>= 2.2~), libjs-jquery, libjs-underscore Homepage: http://neuralensemble.org/trac/neo Priority: extra Section: python Filename: pool/main/n/neo/python-neo_0.2.0-2~nd11.04+1_all.deb Size: 1373024 SHA256: 88eca63739f93ec258a5b450fe7a07fda614a3ca5eb5f502187802898c52c60c SHA1: 410b172a79d8fa5f912481b249de6049cf08f8a3 MD5sum: 90046b559fa8d6e147ce9faf835f306d Description: Python IO library for electrophysiological data formats NEO stands for Neural Ensemble Objects and is a project to provide common classes and concepts for dealing with electro-physiological (in vivo and/or simulated) data to facilitate collaborative software/algorithm development. In particular Neo provides: a set a classes for data representation with precise definitions, an IO module with a simple API, documentation, and a set of examples. . NEO offers support for reading data from numerous proprietary file formats (e.g. Spike2, Plexon, AlphaOmega, BlackRock, Axon), read/write support for various open formats (e.g. KlustaKwik, Elan, WinEdr, WinWcp, PyNN), as well as support common file formats, such as HDF5 with Neo-structured content (NeoHDF5, NeoMatlab). . Neo's IO facilities can be seen as a pure-Python and open-source Neuroshare replacement. Package: python-neurosynth Source: neurosynth Version: 0.3-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 176 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-nibabel, python-ply Recommends: python-nose, fsl-mni152-templates Suggests: python-testkraut Homepage: http://neurosynth.org Priority: extra Section: python Filename: pool/main/n/neurosynth/python-neurosynth_0.3-1~nd11.04+1_all.deb Size: 32658 SHA256: 1079c4bcf82eda44481b4714b7f0c3baa955c7ac256303e3750b4878c7074682 SHA1: 8e9a0ea6f93dbf3efb80e8cee87df763ce0585b4 MD5sum: 42f3bdfa79a1eba400edbdd6d39ec74b Description: large-scale synthesis of functional neuroimaging data NeuroSynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. This Python module at the moment provides functionality for processing the database of collected terms and spatial coordinates to generate associated spatial statistical maps. Package: python-nibabel Source: nibabel Version: 1.3.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4468 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-dicom, python-fuse Suggests: python-nibabel-doc Provides: python2.6-nibabel, python2.7-nibabel Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: python Filename: pool/main/n/nibabel/python-nibabel_1.3.0-1~nd11.04+1_all.deb Size: 1816566 SHA256: 56a549ccde33688997b96895b931a08db33446feeb376e5f9f1c1060093f5492 SHA1: c6f01d928311fddd47b81e71013d82322f6b38a3 MD5sum: 3e4aba078c4ad97f2f7fe18b158c99cd Description: Python bindings to various neuroimaging data formats NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package also provides a commandline tools: . - dicomfs - FUSE filesystem on top of a directory with DICOMs - nib-ls - 'ls' for neuroimaging files - parrec2nii - for conversion of PAR/REC to NIfTI images Python-Version: 2.6, 2.7 Package: python-nibabel-doc Source: nibabel Version: 1.3.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2840 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: doc Filename: pool/main/n/nibabel/python-nibabel-doc_1.3.0-1~nd11.04+1_all.deb Size: 413538 SHA256: c60e713abb0fd104d65f9801a6633df4d75962cfaffe9b46e70c8943f9fbf9a2 SHA1: 4909de2452fb456b41cececa383ffc813edc656b MD5sum: d479e4ed9735281f322322711a31c630 Description: documentation for NiBabel NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package provides the documentation in HTML format. Package: python-nipy Source: nipy Version: 0.2.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3764 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.6), python-numpy (<< 1:1.6), python-numpy (>= 1:1.5.1), python-support (>= 0.90.0), python-scipy, python-nibabel, python-nipy-lib (>= 0.2.0-1~nd11.04+1) Recommends: python-matplotlib, mayavi2, python-sympy Suggests: python-mvpa Provides: python2.6-nipy, python2.7-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: python Filename: pool/main/n/nipy/python-nipy_0.2.0-1~nd11.04+1_all.deb Size: 763078 SHA256: 0c4ee8aa6a2cdfdc438473bb4b175307bf2f72db21311ac8f78253593e94bf44 SHA1: 016789e2d381fe75cfbd519854f65dcf41ae3f1c MD5sum: b8e91cecb6dc161375a040894adeb01a Description: Analysis of structural and functional neuroimaging data NiPy is a Python-based framework for the analysis of structural and functional neuroimaging data. It provides functionality for - General linear model (GLM) statistical analysis - Combined slice time correction and motion correction - General image registration routines with flexible cost functions, optimizers and re-sampling schemes - Image segmentation - Basic visualization of results in 2D and 3D - Basic time series diagnostics - Clustering and activation pattern analysis across subjects - Reproducibility analysis for group studies Python-Version: 2.6, 2.7 Package: python-nipy-doc Source: nipy Version: 0.2.0-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9496 Depends: neurodebian-popularity-contest, libjs-jquery Recommends: python-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: doc Filename: pool/main/n/nipy/python-nipy-doc_0.2.0-1~nd11.04+1_all.deb Size: 2371180 SHA256: 8a56f4c9604394812d1039eedfc79f9334e3436839d14c626f15cbfaeb4145c9 SHA1: 1b30671b998fb4ef694f99c57a31670b344782b8 MD5sum: 469b251f291e72e3096b04a2a94cadeb Description: documentation and examples for NiPy This package contains NiPy documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation Package: python-nipype Source: nipype Version: 0.8-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3468 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-scipy, python-simplejson, python-traits (>= 4.0) | python-traits4, python-nibabel (>= 1.0.0~), python-networkx (>= 1.3), python-cfflib Recommends: ipython, python-nose, graphviz Suggests: fsl, afni, python-nipy, slicer, matlab-spm8, python-pyxnat Provides: python2.6-nipype, python2.7-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: python Filename: pool/main/n/nipype/python-nipype_0.8-1~nd11.04+1_all.deb Size: 587438 SHA256: 9e27aa1ddee412bad5041f63195dd2a5e81a264c397810837eb5f2cad09058ab SHA1: 2ed7f2c68b3d439afa329fe72a2567a969441493 MD5sum: 516715ffae9905a81a5d8930a625a368 Description: Neuroimaging data analysis pipelines in Python Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). Package: python-nipype-doc Source: nipype Version: 0.8-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16068 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: doc Filename: pool/main/n/nipype/python-nipype-doc_0.8-1~nd11.04+1_all.deb Size: 7169516 SHA256: a5e7e48ec0ddd7334415de35870f1d9a33b43dda0f1a19b68a0535928141cb53 SHA1: f490410d81a4e72fffc7c91419e18ebcbf96faa6 MD5sum: b776c00c52668011360a93802e7b55b5 Description: Neuroimaging data analysis pipelines in Python -- documentation Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). . This package contains Nipype examples and documentation in various formats. Package: python-nitime Source: nitime Version: 0.4-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9444 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-matplotlib, python-nose, python-nibabel, python-networkx Homepage: http://nipy.org/nitime Priority: extra Section: python Filename: pool/main/n/nitime/python-nitime_0.4-2~nd11.04+1_all.deb Size: 3908914 SHA256: f3c86735ec1c07de8a3ae548643d79d7419711aab9eaa4f536c6800c40727273 SHA1: ae724375a62f57786f419ea34db719d26a180c6c MD5sum: 96af915baae7b203433db3214fc3a49d Description: timeseries analysis for neuroscience data (nitime) Nitime is a Python module for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code. Package: python-nitime-doc Source: nitime Version: 0.4-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7128 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nitime Homepage: http://nipy.org/nitime Priority: extra Section: doc Filename: pool/main/n/nitime/python-nitime-doc_0.4-2~nd11.04+1_all.deb Size: 5294220 SHA256: e3b2bcd163c3cc783fa6d22297c69ff7dc7ea15098c3cb6190a1715fd1dbd97e SHA1: 4615c07f881bf16ab6cef945e07e6cd3275f862d MD5sum: 4838c1f168c9557f36a13148e7b0eb67 Description: timeseries analysis for neuroscience data (nitime) -- documentation Nitime is a Python module for time-series analysis of data from neuroscience experiments. . This package provides the documentation in HTML format. Package: python-openopt Source: openopt Version: 0.38+svn1589-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1612 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy Recommends: python-scipy, python-cvxopt, python-matplotlib, python-setproctitle Suggests: lp-solve Conflicts: python-scikits-openopt Replaces: python-scikits-openopt Provides: python2.6-openopt, python2.7-openopt Homepage: http://www.openopt.org Priority: extra Section: python Filename: pool/main/o/openopt/python-openopt_0.38+svn1589-1~nd11.04+1_all.deb Size: 245060 SHA256: 25adc0e03ebcd4df7c4b42a215e69b0b54cd4fa32d32be48fb092879bf959c96 SHA1: 0abb57edb20fa7abe6e33d69a1a88f861afc0e1a MD5sum: 1bda3d05f1868d93ae0d5c09a01c8bbb Description: Python module for numerical optimization Numerical optimization framework developed in Python which provides connections to lots of solvers with easy and unified OpenOpt syntax. Problems which can be tackled with OpenOpt * Linear Problem (LP) * Mixed-Integer Linear Problem (MILP) * Quadratic Problem (QP) * Non-Linear Problem (NLP) * Non-Smooth Problem (NSP) * Non-Linear Solve Problem (NLSP) * Least Squares Problem (LSP) * Linear Least Squares Problem (LLSP) * Mini-Max Problem (MMP) * Global Problem (GLP) . A variety of solvers is available (e.g. IPOPT, ALGENCAN). Python-Version: 2.6, 2.7 Package: python-openpyxl Source: openpyxl Version: 1.6.1+hg2-g4bff8e3-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 404 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0) Recommends: python-nose Homepage: http://bitbucket.org/ericgazoni/openpyxl/ Priority: optional Section: python Filename: pool/main/o/openpyxl/python-openpyxl_1.6.1+hg2-g4bff8e3-1~nd11.04+1_all.deb Size: 62038 SHA256: 7c1f3afbdbf007bb37ea58770aa2a2b17541b1d87e0609fed45704195a63060a SHA1: a3c97e3d51355f89c0cd0abb6ec291caeffca0e7 MD5sum: 5b66e51ff733884040afb6ee587dec2b Description: module to read/write OpenXML xlsx/xlsm files Openpyxl is a pure Python module to read/write Excel 2007 (OpenXML) xlsx/xlsm files. Package: python-pandas Source: pandas Version: 0.7.3-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2220 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-dateutil, python-pandas-lib (>= 0.7.3-1~nd11.04+1) Recommends: python-scipy, python-matplotlib, python-tables, python-tz, python-xlrd, python-scikits.statsmodels, python-openpyxl, python-xlwt Suggests: python-pandas-doc Provides: python2.6-pandas, python2.7-pandas Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python-pandas_0.7.3-1~nd11.04+1_all.deb Size: 460914 SHA256: 4db83900523de2a81465ee1de273c90efe39ace7dd6e731444c7c37d71addfba SHA1: 3dc4ee1157163fa22e13b1dbccdada1f68b301ae MD5sum: 3e068f630295bbb058f3192b7e06849b Description: data structures for "relational" or "labeled" data pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure Package: python-pp Source: parallelpython Version: 1.6.2-2~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 176 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.parallelpython.com/ Priority: optional Section: python Filename: pool/main/p/parallelpython/python-pp_1.6.2-2~nd11.04+1_all.deb Size: 34276 SHA256: 6750103e987f1149a1e031066d6aba20717b1bf76cbb41892b3003db75843fd9 SHA1: 7f2f98a4539b38bd612ed8dfdcf0ed9b28038e00 MD5sum: c9ea3e7de8feb69ac28a94a878539e2f Description: parallel and distributed programming toolkit for Python Parallel Python module (pp) provides an easy and efficient way to create parallel-enabled applications for SMP computers and clusters. pp module features cross-platform portability and dynamic load balancing. Thus application written with PP will parallelize efficiently even on heterogeneous and multi-platform clusters (including clusters running other application with variable CPU loads). Python-Version: 2.6, 2.7 Package: python-pyentropy Source: pyentropy Version: 0.4.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 108 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy (>= 1.3) Recommends: python-scipy Suggests: python-nose Provides: python2.6-pyentropy, python2.7-pyentropy Homepage: http://code.google.com/p/pyentropy Priority: extra Section: python Filename: pool/main/p/pyentropy/python-pyentropy_0.4.1-1~nd11.04+1_all.deb Size: 21340 SHA256: d3e1aebdb6d350a4091b2864bc1cfbfd4650b5e42b909f5b1834935fa4a2b502 SHA1: 79e7f896b1e98a39cb2653e7c28e0115780e2d3a MD5sum: 883ef75c66bb64ec02d2b11e09795932 Description: Python module for estimation information theoretic quantities A Python module for estimation of entropy and information theoretic quantities using cutting edge bias correction methods, such as * Panzeri-Treves (PT) * Quadratic Extrapolation (QE) * Nemenman-Shafee-Bialek (NSB) Python-Version: 2.6, 2.7 Package: python-pyepl-common Source: pyepl Version: 1.1.0+git12-g365f8e3-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 820 Depends: neurodebian-popularity-contest, python Homepage: http://pyepl.sourceforge.net/ Priority: optional Section: python Filename: pool/main/p/pyepl/python-pyepl-common_1.1.0+git12-g365f8e3-1~nd11.04+1_all.deb Size: 818170 SHA256: d61ed022d88f8c56a90370590d6f17263f2957dc622346f7a4d4e8e2f04b2081 SHA1: f5febcb92b2e06a7e30bafaa49e5a15b3702e3f4 MD5sum: cb62793fc7138e733b9122759559fdb3 Description: module for coding psychology experiments in Python PyEPL is a stimuli delivery and response registration toolkit to be used for generating psychology (as well as neuroscience, marketing research, and other) experiments. . It provides - presentation: both visual and auditory stimuli - responses registration: both manual (keyboard/joystick) and sound (microphone) time-stamped - sync-pulsing: synchronizing your behavioral task with external acquisition hardware - flexibility of encoding various experiments due to the use of Python as a description language - fast execution of critical points due to the calls to linked compiled libraries . This toolbox is here to be an alternative for a widely used commercial product E'(E-Prime) . This package provides common files such as images. Package: python-pynn Source: pynn Version: 0.7.5-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1008 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Recommends: python-jinja2, python-cheetah Suggests: python-neuron, python-brian, python-csa Homepage: http://neuralensemble.org/trac/PyNN Priority: extra Section: python Filename: pool/main/p/pynn/python-pynn_0.7.5-1~nd11.04+1_all.deb Size: 175772 SHA256: 57429a377b2bfed1bf643fdb8d5884dbd123a9aedc4b2a51d3497bdcca2823f7 SHA1: 0aadef80a740a6c87e701ca33ac4834de82fe7e8 MD5sum: 42b5fafbaab794828c125e246fe1fb75 Description: simulator-independent specification of neuronal network models PyNN allows for coding a model once and run it without modification on any simulator that PyNN supports (currently NEURON, NEST, PCSIM and Brian). PyNN translates standard cell-model names and parameter names into simulator-specific names. Package: python-pyxnat Source: pyxnat Version: 0.9.1+git39-g96bf069-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 672 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-lxml, python-simplejson, python-httplib2 (>= 0.7.0) Recommends: python-networkx, python-matplotlib Provides: python2.6-pyxnat, python2.7-pyxnat Homepage: http://packages.python.org/pyxnat/ Priority: extra Section: python Filename: pool/main/p/pyxnat/python-pyxnat_0.9.1+git39-g96bf069-1~nd11.04+1_all.deb Size: 107402 SHA256: eaf031d9883ae19eabaa4708c50661710c30f99ec3f8237b6a01a34ecd8cb039 SHA1: cb52b313c988ce18a78b8c6e43468f6235af1e9f MD5sum: 84d285af936b3af5b9182c456ae24fbe Description: Interface to access neuroimaging data on XNAT servers pyxnat is a simple Python library that relies on the REST API provided by the XNAT platform since its 1.4 version. XNAT is an extensible database for neuroimaging data. The main objective is to ease communications with an XNAT server to plug-in external tools or Python scripts to process the data. It features: . - resources browsing capabilities - read and write access to resources - complex searches - disk-caching of requested files and resources Package: python-quantities Version: 0.10.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 508 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy (>= 1.4) Homepage: http://packages.python.org/quantities/ Priority: extra Section: python Filename: pool/main/p/python-quantities/python-quantities_0.10.1-1~nd11.04+1_all.deb Size: 60344 SHA256: 7198da79d70c3b046900ef5c9934b2b64d8d005f9135f485eb2176a5d43ae0b6 SHA1: 55272357a667712976a080c6dbee2dce5817a06e MD5sum: 186aa6d0a5d0d575d368ac1961e72874 Description: Library for computation of physical quantities with units, based on numpy Quantities is designed to handle arithmetic and conversions of physical quantities, which have a magnitude, dimensionality specified by various units, and possibly an uncertainty. Quantities builds on the popular numpy library and is designed to work with numpy ufuncs, many of which are already supported. Package: python-scikits-learn Source: scikit-learn Version: 0.14.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 40 Depends: neurodebian-popularity-contest, python-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: oldlibs Filename: pool/main/s/scikit-learn/python-scikits-learn_0.14.1-1~nd11.04+1_all.deb Size: 33362 SHA256: 452882d49f67043ba1b05e260fcb50736073bc709943d6c9c7fef5004dca14bb SHA1: f4e0b60b6ff5440dea700ab897ea67d376eca6a6 MD5sum: 37d455d0a2130c7dd05f1c98e285af81 Description: transitional compatibility package for scikits.learn -> sklearn migration Provides old namespace (scikits.learn) and could be removed if dependent code migrated to use sklearn for clarity of the namespace. Package: python-scikits.statsmodels Source: statsmodels Version: 0.3.1-4~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 13276 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-matplotlib, python-nose, python-rpy Conflicts: python-scikits-statsmodels Replaces: python-scikits-statsmodels Provides: python2.6-scikits.statsmodels, python2.7-scikits.statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: python Filename: pool/main/s/statsmodels/python-scikits.statsmodels_0.3.1-4~nd11.04+1_all.deb Size: 3099052 SHA256: a3783f4a0225f1740a8b525e78faa5543cc8834fc5d5c90eabda9613e7a7c5b3 SHA1: fb89ac3a90e29472587037cb3d04afc00ce0c92c MD5sum: d23ba58c04184484f6a96ae209b6da25 Description: classes and functions for the estimation of statistical models scikits.statsmodels is a pure Python package that provides classes and functions for the estimation of several categories of statistical models. These currently include linear regression models, OLS, GLS, WLS and GLS with AR(p) errors, generalized linear models for six distribution families and M-estimators for robust linear models. An extensive list of result statistics are available for each estimation problem. Python-Version: 2.6, 2.7 Package: python-scikits.statsmodels-doc Source: statsmodels Version: 0.3.1-4~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 18740 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-scikits.statsmodels Conflicts: python-scikits-statsmodels-doc Replaces: python-scikits-statsmodels-doc Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: doc Filename: pool/main/s/statsmodels/python-scikits.statsmodels-doc_0.3.1-4~nd11.04+1_all.deb Size: 1877710 SHA256: 8daa6c45ed85370df37e7b64df1c588ffef9755206bc21404601db42fa69f946 SHA1: 44e41d473a07c8acd1d5f6ef4306c66c018107c4 MD5sum: 73b386a9ee0240feab087607b1750fb7 Description: documentation and examples for python-scikits.statsmodels This package contains HTML documentation and example scripts for python-scikits.statsmodels. Package: python-sklearn Source: scikit-learn Version: 0.14.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4248 Depends: neurodebian-popularity-contest, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-sklearn-lib (>= 0.14.1-1~nd11.04+1), python-joblib (>= 0.4.5) Recommends: python-nose, python-matplotlib Suggests: python-dap, python-scikits-optimization, python-sklearn-doc, ipython Enhances: python-mdp, python-mvpa2 Breaks: python-scikits-learn (<< 0.9~) Replaces: python-scikits-learn (<< 0.9~) Provides: python2.6-sklearn, python2.7-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: python Filename: pool/main/s/scikit-learn/python-sklearn_0.14.1-1~nd11.04+1_all.deb Size: 1110512 SHA256: a156f7af19a989c2b139285c465cd31ca69696942b0b32a9a3d3e7c8f4810b55 SHA1: 07c890baeebf372b179cec0710a13583cce6ec2f MD5sum: e1250ac093ca0b1cf09df8bca316d2c3 Description: Python modules for machine learning and data mining scikit-learn is a collection of Python modules relevant to machine/statistical learning and data mining. Non-exhaustive list of included functionality: - Gaussian Mixture Models - Manifold learning - kNN - SVM (via LIBSVM) Package: python-sklearn-doc Source: scikit-learn Version: 0.14.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 988 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-sklearn Conflicts: python-scikits-learn-doc Replaces: python-scikits-learn-doc Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: doc Filename: pool/main/s/scikit-learn/python-sklearn-doc_0.14.1-1~nd11.04+1_all.deb Size: 190050 SHA256: fe97daa81beec65489730831cf090856e688b26b226e37ea5e76d3dda5ab7d98 SHA1: 06c377f351d2ff26b241088bb8ab3b43fb67e5c3 MD5sum: d638e094e0a17f4c3993a9adc8787c6f Description: documentation and examples for scikit-learn This package contains documentation and example scripts for python-sklearn. Package: python-surfer Source: pysurfer Version: 0.3+git15-gae6cbb1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 152 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-nibabel, python-imaging, mayavi2, python-argparse, ipython Recommends: mencoder Homepage: http://pysurfer.github.com Priority: extra Section: python Filename: pool/main/p/pysurfer/python-surfer_0.3+git15-gae6cbb1-1~nd11.04+1_all.deb Size: 28010 SHA256: 58e38d33f0ecb23e6d5419e3690b6f8a4fd889eae7b24a1dc0c60f30b9d3a627 SHA1: f79f29c444f4eccd81b81122225fffdb543cfaee MD5sum: f81ddb8fb0acf7b4c263295015061b6f Description: visualize Freesurfer's data in Python This is a Python package for visualization and interaction with cortical surface representations of neuroimaging data from Freesurfer. It extends Mayavi’s powerful visualization engine with a high-level interface for working with MRI and MEG data. . PySurfer offers both a command-line interface designed to broadly replicate Freesurfer’s Tksurfer program as well as a Python library for writing scripts to efficiently explore complex datasets. Python-Version: 2.6, 2.7 Package: python-tz Version: 2012c-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 164 Depends: neurodebian-popularity-contest, tzdata, python2.7 | python2.6, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python-tz_2012c-1~nd11.04+1_all.deb Size: 38298 SHA256: 111f2a31b998e7ded357099cbe64c257757055b04f7db8806b68c02a22178deb SHA1: 6b73cf1b37b66e493f680953f4dd335e14b45266 MD5sum: efc4213edb006a9b7024bfda0c42ae5d Description: Python version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). Package: python3-datalad Source: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, git-annex (>= 8.20200309~) | git-annex-standalone (>= 8.20200309~), patool, p7zip-full, python3 (>= 3.7), python3-annexremote, python3-distro, python3-distutils | libpython3-stdlib (<= 3.6.4~rc1-2), python3-fasteners (>= 0.14~), python3-gitlab, python3-humanize, python3-importlib-metadata | python3 (>> 3.10), python3-iso8601, python3-keyring, python3-keyrings.alt | python3-keyring (<= 8), python3-mock, python3-msgpack, python3-pil, python3-platformdirs, python3-requests (>= 1.2), python3-secretstorage, python3-simplejson, python3-six, python3-tqdm, python3-chardet, python3-packaging, python3:any Recommends: python3-boto, python3-exif, python3-html5lib, python3-httpretty, python3-jsmin, python3-libxmp, python3-lzma, python3-mutagen, python3-pytest, python3-pyperclip, python3-requests-ftp, python3-vcr, python3-whoosh Suggests: python3-duecredit, datalad-container, datalad-crawler, datalad-neuroimaging, python3-bs4, python3-numpy Breaks: datalad-container (<< 1.1.2) Homepage: https://datalad.org Priority: optional Section: python Filename: pool/main/d/datalad/python3-datalad_0.17.5-1~nd+1_all.deb Size: 958872 SHA256: 1f3e16c16863bab40ba92405109ab26c78f19e3e86e2b38733a035221c4e7744 SHA1: 873da190eb5ee83576ff519c2d564e1f841abe5b MD5sum: 7a97a6f55929cc103dd60d7783a9565e Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) . This package installs the module for Python 3, and Recommends install all dependencies necessary for searching and managing datasets, publishing, and testing. If you need base functionality, install without Recommends. Package: python3-dateutil Version: 2.0+dfsg1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 208 Depends: neurodebian-popularity-contest, python3 (>= 3.1.3-13~), tzdata Homepage: http://labix.org/python-dateutil Priority: optional Section: python Filename: pool/main/p/python3-dateutil/python3-dateutil_2.0+dfsg1-1~nd11.04+1_all.deb Size: 49692 SHA256: 18fc4e2f33c6fcb6c00603186395240fb7d6ff1713aeff84c78fb0a7d1750aee SHA1: c37275c925b79d867c7fae21bb71208cc981a82c MD5sum: 04d1416678c06271f71a2d2d8f53d279 Description: powerful extensions to the standard datetime module in Python 3 The dateutil package extends the standard datetime module with: . * computing of relative deltas (next month, next year, next Monday, last week of month, etc); * computing of relative deltas between two given date and/or datetime objects * computing of dates based on very flexible recurrence rules, using a superset of the iCalendar specification. Parsing of RFC strings is supported as well. * generic parsing of dates in almost any string format * timezone (tzinfo) implementations for tzfile(5) format files (/etc/localtime, /usr/share/zoneinfo, etc), TZ environment string (in all known formats), iCalendar format files, given ranges (with help from relative deltas), local machine timezone, fixed offset timezone, UTC timezone * computing of Easter Sunday dates for any given year, using Western, Orthodox or Julian algorithms Package: python3-tz Source: python-tz Version: 2012c-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 144 Depends: neurodebian-popularity-contest, tzdata, python3 (>= 3.1.3-13~) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python3-tz_2012c-1~nd11.04+1_all.deb Size: 31094 SHA256: ef7a145dc68ced0ed38ba9be5038ee827238e99bd4a4cece7ca982fcd574b7d2 SHA1: dc6e5b96d77bb12df6647d1e6f02c7057fff197e MD5sum: 718915a759699786a5e3d73c1f5f6330 Description: Python3 version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). . This package contains the Python 3 version of the library. Package: spm8-common Source: spm8 Version: 8.5236~dfsg.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 22600 Depends: neurodebian-popularity-contest Recommends: spm8-data, spm8-doc Priority: extra Section: science Filename: pool/main/s/spm8/spm8-common_8.5236~dfsg.1-1~nd11.04+1_all.deb Size: 10729040 SHA256: 29df4947a4045d6dd09eddd02d0f426b0edfb17aeab9f5c7e05bc7369fede383 SHA1: a0596d0ad830da762f60ce018923dc54e3992d87 MD5sum: 5c0dc85fb29417fe248fdd7ffb5fe2d7 Description: analysis of brain imaging data sequences Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the platform-independent M-files. Package: spm8-data Source: spm8 Version: 8.5236~dfsg.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 73316 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/s/spm8/spm8-data_8.5236~dfsg.1-1~nd11.04+1_all.deb Size: 52177088 SHA256: ad7fcb807b5b920972f79652bc37cacb13ac63e53af5e66363758d92e325a4be SHA1: c8defefc8def27914a8460949faaea9ce4e36240 MD5sum: b97797be1a18ecf7aaf38d38bf33a72d Description: data files for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provide the data files shipped with the SPM distribution, such as various stereotaxic brain space templates and EEG channel setups. Package: spm8-doc Source: spm8 Version: 8.5236~dfsg.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 9428 Depends: neurodebian-popularity-contest Priority: extra Section: doc Filename: pool/main/s/spm8/spm8-doc_8.5236~dfsg.1-1~nd11.04+1_all.deb Size: 8649086 SHA256: 1b7c98ac740d23118c03343011b11921cac7fb36628ee871cee99bc2128580ff SHA1: 087b3a96573c0077cae786f2880abb25aa3cfe81 MD5sum: 8ddedb52c87c15d92cd1e4608712e4e3 Description: manual for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the SPM manual in PDF format. Package: testkraut Version: 0.0.1-1~nd11.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 484 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, libjs-underscore, libjs-jquery, python-argparse Recommends: strace, python-scipy, python-colorama, python-apt Homepage: https://github.com/neurodebian/testkraut Priority: extra Section: python Filename: pool/main/t/testkraut/testkraut_0.0.1-1~nd11.04+1_all.deb Size: 83560 SHA256: cb6d4623f6646ea8d59acec4ab91598dd4f4030e2294145dfa1c4324493506dd SHA1: 9f83d84477b844758acfe41aaadef50d0cc0271b MD5sum: 7550c18aed8b652ac8055dc04b243255 Description: test and evaluate heterogeneous data processing pipelines This is a framework for software testing. That being said, testkraut tries to minimize the overlap with the scopes of unit testing, regression testing, and continuous integration testing. Instead, it aims to complement these kinds of testing, and is able to re-use them, or can be integrated with them. . In a nutshell testkraut helps to facilitate statistical analysis of test results. In particular, it focuses on two main scenarios: . * Comparing results of a single (test) implementation across different or changing computational environments (think: different operating systems, different hardware, or the same machine before an after a software upgrade). * Comparing results of different (test) implementations generating similar output from identical input (think: performance of various signal detection algorithms). . While such things can be done using other available tools as well, testkraut aims to provide a lightweight, yet comprehensive description of a test run. Such a description allows for decoupling test result generation and analysis – opening up the opportunity to “crowd-source” software testing efforts, and aggregate results beyond the scope of a single project, lab, company, or site. Python-Version: 2.6, 2.7 Package: youtube-dl Version: 2021.12.17-1~nd110+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5937 Depends: neurodebian-popularity-contest, python3-pkg-resources, python3:any Recommends: aria2 | wget | curl, ca-certificates, ffmpeg, mpv | mplayer, python3-pyxattr, rtmpdump, python3-pycryptodome Suggests: libfribidi-bin | bidiv, phantomjs Homepage: https://ytdl-org.github.io/youtube-dl/ Priority: optional Section: web Filename: pool/main/y/youtube-dl/youtube-dl_2021.12.17-1~nd110+1_all.deb Size: 1128692 SHA256: 75859d2f34a475fc0f199cd6d2b73e18c29cda44406530964890dcb790008eca SHA1: 09f85f2abc32eb5e9c2ccd6bfd1354ea332b6489 MD5sum: 6d04814be91bd9f85a7d3793ff2a2fb3 Description: downloader of videos from YouTube and other sites youtube-dl is a small command-line program to download videos from YouTube.com and other sites that don't provide direct links to the videos served. . youtube-dl allows the user, among other things, to choose a specific video quality to download (if available) or let the program automatically determine the best (or worst) quality video to grab. It supports downloading entire playlists and all videos from a given user. . Currently supported sites (or features of sites) are: . 1tv, 20min, 220.ro, 23video, 24video, 3qsdn, 3sat, 4tube, 56.com, 5min, 6play, 7plus, 8tracks, 91porn, 9c9media, 9gag, 9now.com.au, abc.net.au, abc.net.au:iview, abcnews, abcnews:video, abcotvs, abcotvs:clips, AcademicEarth:Course, acast, acast:channel, ADN, AdobeConnect, adobetv, adobetv:channel, adobetv:embed, adobetv:show, adobetv:video, AdultSwim, aenetworks, aenetworks:collection, aenetworks:show, afreecatv, AirMozilla, AliExpressLive, AlJazeera, Allocine, AlphaPorno, Amara, AMCNetworks, AmericasTestKitchen, AmericasTestKitchenSeason, anderetijden, AnimeOnDemand, Anvato, aol.com, APA, Aparat, AppleConnect, AppleDaily, ApplePodcasts, appletrailers, appletrailers:section, archive.org, ArcPublishing, ARD, ARD:mediathek, ARDBetaMediathek, Arkena, arte.sky.it, ArteTV, ArteTVEmbed, ArteTVPlaylist, AsianCrush, AsianCrushPlaylist, AtresPlayer, ATTTechChannel, ATVAt, AudiMedia, AudioBoom, audiomack, audiomack:album, AWAAN, awaan:live, awaan:season, awaan:video, AZMedien, BaiduVideo, Bandcamp, Bandcamp:album, Bandcamp:weekly, bangumi.bilibili.com, bbc, bbc.co.uk, bbc.co.uk:article, bbc.co.uk:iplayer:playlist, bbc.co.uk:playlist, BBVTV, Beatport, Beeg, BehindKink, Bellator, BellMedia, Bet, bfi:player, bfmtv, bfmtv:article, bfmtv:live, BibelTV, Bigflix, Bild, BiliBili, BilibiliAudio, BilibiliAudioAlbum, BiliBiliPlayer, BioBioChileTV, Biography, BIQLE, BitChute, BitChuteChannel, BleacherReport, BleacherReportCMS, blinkx, Bloomberg, BokeCC, BongaCams, BostonGlobe, Box, Bpb, BR, BravoTV, Break, brightcove:legacy, brightcove:new, BRMediathek, bt:article, bt:vestlendingen, BusinessInsider, BuzzFeed, BYUtv, Camdemy, CamdemyFolder, CamModels, CamTube, CamWithHer, canalc2.tv, Canalplus, Canvas, CanvasEen, CarambaTV, CarambaTVPage, CartoonNetwork, cbc.ca, cbc.ca:olympics, cbc.ca:player, cbc.ca:watch, cbc.ca:watch:video, CBS, CBSInteractive, CBSLocal, CBSLocalArticle, cbsnews, cbsnews:embed, cbsnews:livevideo, CBSSports, CCMA, CCTV, CDA, CeskaTelevize, CeskaTelevizePorady, channel9, CharlieRose, Chaturbate, Chilloutzone, chirbit, chirbit:profile, cielotv.it, Cinchcast, Cinemax, CiscoLiveSearch, CiscoLiveSession, CJSW, cliphunter, Clippit, ClipRs, Clipsyndicate, CloserToTruth, CloudflareStream, Cloudy, Clubic, Clyp, cmt.com, CNBC, CNBCVideo, CNN, CNNArticle, CNNBlogs, ComedyCentral, ComedyCentralTV, CommonMistakes, CondeNast, CONtv, Corus, Coub, Cracked, Crackle, CrooksAndLiars, crunchyroll, crunchyroll:playlist, CSpan, CtsNews, CTV, CTVNews, cu.ntv.co.jp, Culturebox, CultureUnplugged, curiositystream, curiositystream:collection, CWTV, DailyMail, dailymotion, dailymotion:playlist, dailymotion:user, daum.net, daum.net:clip, daum.net:playlist, daum.net:user, DBTV, DctpTv, DeezerPlaylist, defense.gouv.fr, democracynow, DHM, Digg, DigitallySpeaking, Digiteka, Discovery, DiscoveryGo, DiscoveryGoPlaylist, DiscoveryNetworksDe, DiscoveryVR, Disney, dlive:stream, dlive:vod, Dotsub, DouyuShow, DouyuTV, DPlay, DRBonanza, Dropbox, DrTuber, drtv, drtv:live, DTube, Dumpert, dvtv, dw, dw:article, EaglePlatform, EbaumsWorld, EchoMsk, egghead:course, egghead:lesson, ehftv, eHow, EinsUndEinsTV, Einthusan, eitb.tv, EllenTube, EllenTubePlaylist, EllenTubeVideo, ElPais, Embedly, EMPFlix, Engadget, Eporner, EroProfile, Escapist, ESPN, ESPNArticle, EsriVideo, Europa, EWETV, ExpoTV, Expressen, ExtremeTube, EyedoTV, facebook, FacebookPluginsVideo, faz.net, fc2, fc2:embed, Fczenit, filmon, filmon:channel, Filmweb, FiveThirtyEight, FiveTV, Flickr, Folketinget, FootyRoom, Formula1, FOX, FOX9, FOX9News, Foxgay, foxnews, foxnews:article, FoxSports, france2.fr:generation-what, FranceCulture, FranceInter, FranceTV, FranceTVEmbed, francetvinfo.fr, FranceTVJeunesse, FranceTVSite, Freesound, freespeech.org, FreshLive, FrontendMasters, FrontendMastersCourse, FrontendMastersLesson, FujiTVFODPlus7, Funimation, Funk, Fusion, Fux, Gaia, GameInformer, GameSpot, GameStar, Gaskrank, Gazeta, GDCVault, generic, Gfycat, GiantBomb, Giga, GlattvisionTV, Glide, Globo, GloboArticle, Go, GodTube, Golem, google:podcasts, google:podcasts:feed, GoogleDrive, Goshgay, GPUTechConf, Groupon, hbo, HearThisAt, Heise, HellPorno, Helsinki, HentaiStigma, hetklokhuis, hgtv.com:show, HiDive, HistoricFilms, history:player, history:topic, hitbox, hitbox:live, HitRecord, hketv, HornBunny, HotNewHipHop, hotstar, hotstar:playlist, Howcast, HowStuffWorks, HRTi, HRTiPlaylist, Huajiao, HuffPost, Hungama, HungamaSong, Hypem, ign.com, IGNArticle, IGNVideo, IHeartRadio, iheartradio:podcast, imdb, imdb:list, Imgur, imgur:album, imgur:gallery, Ina, Inc, IndavideoEmbed, InfoQ, Instagram, instagram:tag, instagram:user, Internazionale, InternetVideoArchive, IPrima, iqiyi, Ir90Tv, ITTF, ITV, ITVBTCC, ivi, ivi:compilation, ivideon, Iwara, Izlesene, Jamendo, JamendoAlbum, JeuxVideo, Joj, Jove, JWPlatform, Kakao, Kaltura, Kankan, Karaoketv, KarriereVideos, Katsomo, KeezMovies, Ketnet, khanacademy, khanacademy:unit, KickStarter, KinjaEmbed, KinoPoisk, KonserthusetPlay, KrasView, Ku6, KUSI, kuwo:album, kuwo:category, kuwo:chart, kuwo:mv, kuwo:singer, kuwo:song, la7.it, laola1tv, laola1tv:embed, lbry, lbry:channel, LCI, Lcp, LcpPlay, Le, Lecture2Go, Lecturio, LecturioCourse, LecturioDeCourse, LEGO, Lemonde, Lenta, LePlaylist, LetvCloud, Libsyn, life, life:embed, limelight, limelight:channel, limelight:channel_list, LineTV, linkedin:learning, linkedin:learning:course, LinuxAcademy, LiTV, LiveJournal, LiveLeak, LiveLeakEmbed, livestream, livestream:original, livestream:shortener, LnkGo, loc, LocalNews8, LoveHomePorn, lrt.lt, lynda, lynda:course, m6, mailru, mailru:music, mailru:music:search, MallTV, mangomolo:live, mangomolo:video, ManyVids, Markiza, MarkizaPage, massengeschmack.tv, MatchTV, MDR, MedalTV, media.ccc.de, media.ccc.de:lists, Medialaan, Mediaset, Mediasite, MediasiteCatalog, MediasiteNamedCatalog, Medici, megaphone.fm, Meipai, MelonVOD, META, metacafe, Metacritic, mewatch, Mgoon, MGTV, MiaoPai, minds, minds:channel, minds:group, MinistryGrid, Minoto, miomio.tv, MiTele, mixcloud, mixcloud:playlist, mixcloud:user, MLB, Mms, Mnet, MNetTV, MoeVideo, Mofosex, MofosexEmbed, Mojvideo, Morningstar, Motherless, MotherlessGroup, Motorsport, MovieClips, MovieFap, Moviezine, MovingImage, MSN, mtg, mtv, mtv.de, mtv:video, mtvjapan, mtvservices:embedded, MTVUutisetArticle, MuenchenTV, mva, mva:course, Mwave, MwaveMeetGreet, MyChannels, MySpace, MySpace:album, MySpass, Myvi, MyVidster, MyviEmbed, MyVisionTV, n-tv.de, natgeo:video, NationalGeographicTV, Naver, NBA, nba:watch, nba:watch:collection, NBAChannel, NBAEmbed, NBAWatchEmbed, NBC, NBCNews, nbcolympics, nbcolympics:stream, NBCSports, NBCSportsStream, NBCSportsVPlayer, ndr, ndr:embed, ndr:embed:base, NDTV, NerdCubedFeed, netease:album, netease:djradio, netease:mv, netease:playlist, netease:program, netease:singer, netease:song, NetPlus, Netzkino, Newgrounds, NewgroundsPlaylist, Newstube, NextMedia, NextMediaActionNews, NextTV, Nexx, NexxEmbed, nfl.com (CURRENTLY BROKEN), nfl.com:article (CURRENTLY BROKEN), NhkVod, NhkVodProgram, nhl.com, nick.com, nick.de, nickelodeon:br, nickelodeonru, nicknight, niconico, NiconicoPlaylist, Nintendo, njoy, njoy:embed, NJPWWorld, NobelPrize, NonkTube, Noovo, Normalboots, NosVideo, Nova, NovaEmbed, nowness, nowness:playlist, nowness:series, Noz, npo, npo.nl:live, npo.nl:radio, npo.nl:radio:fragment, Npr, NRK, NRKPlaylist, NRKRadioPodkast, NRKSkole, NRKTV, NRKTVDirekte, NRKTVEpisode, NRKTVEpisodes, NRKTVSeason, NRKTVSeries, NRLTV, ntv.ru, Nuvid, NYTimes, NYTimesArticle, NYTimesCooking, NZZ, ocw.mit.edu, OdaTV, Odnoklassniki, OktoberfestTV, OnDemandKorea, onet.pl, onet.tv, onet.tv:channel, OnetMVP, OnionStudios, Ooyala, OoyalaExternal, OraTV, orf:burgenland, orf:fm4, orf:fm4:story, orf:iptv, orf:kaernten, orf:noe, orf:oberoesterreich, orf:oe1, orf:oe3, orf:salzburg, orf:steiermark, orf:tirol, orf:tvthek, orf:vorarlberg, orf:wien, OsnatelTV, OutsideTV, PacktPub, PacktPubCourse, pandora.tv, ParamountNetwork, parliamentlive.tv, Patreon, pbs, PearVideo, PeerTube, People, PerformGroup, periscope, periscope:user, PhilharmonieDeParis, phoenix.de, Photobucket, Picarto, PicartoVod, Piksel, Pinkbike, Pinterest, PinterestCollection, Pladform, Platzi, PlatziCourse, play.fm, player.sky.it, PlayPlusTV, PlaysTV, Playtvak, Playvid, Playwire, pluralsight, pluralsight:course, podomatic, Pokemon, PolskieRadio, PolskieRadioCategory, Popcorntimes, PopcornTV, PornCom, PornerBros, PornHd, PornHub, PornHubPagedVideoList, PornHubUser, PornHubUserVideosUpload, Pornotube, PornoVoisines, PornoXO, PornTube, PressTV, prosiebensat1, puhutv, puhutv:serie, Puls4, Pyvideo, qqmusic, qqmusic:album, qqmusic:playlist, qqmusic:singer, qqmusic:toplist, QuantumTV, Qub, Quickline, QuicklineLive, R7, R7Article, radio.de, radiobremen, radiocanada, radiocanada:audiovideo, radiofrance, RadioJavan, Rai, RaiPlay, RaiPlayLive, RaiPlayPlaylist, RayWenderlich, RayWenderlichCourse, RBMARadio, RDS, RedBull, RedBullEmbed, RedBullTV, RedBullTVRrnContent, Reddit, RedditR, RedTube, RegioTV, RENTV, RENTVArticle, Restudy, Reuters, ReverbNation, RICE, RMCDecouverte, RockstarGames, RoosterTeeth, RottenTomatoes, Roxwel, Rozhlas, RTBF, rte, rte:radio, rtl.nl, rtl2, rtl2:you, rtl2:you:series, Rtmp, RTP, RTS, rtve.es:alacarta, rtve.es:infantil, rtve.es:live, rtve.es:television, RTVNH, RTVS, RUHD, RumbleEmbed, rutube, rutube:channel, rutube:embed, rutube:movie, rutube:person, rutube:playlist, RUTV, Ruutu, Ruv, safari, safari:api, safari:course, SAKTV, SaltTV, Sapo, savefrom.net, SBS, schooltv, screen.yahoo:search, Screencast, ScreencastOMatic, ScrippsNetworks, scrippsnetworks:watch, SCTE, SCTECourse, Seeker, SenateISVP, SendtoNews, Servus, Sexu, SeznamZpravy, SeznamZpravyArticle, Shahid, ShahidShow, Shared, ShowRoomLive, Sina, sky.it, sky:news, sky:sports, sky:sports:news, skyacademy.it, SkylineWebcams, skynewsarabia:article, skynewsarabia:video, Slideshare, SlidesLive, Slutload, Snotr, Sohu, SonyLIV, soundcloud, soundcloud:playlist, soundcloud:search, soundcloud:set, soundcloud:trackstation, soundcloud:user, SoundcloudEmbed, soundgasm, soundgasm:profile, southpark.cc.com, southpark.cc.com:español, southpark.de, southpark.nl, southparkstudios.dk, SpankBang, SpankBangPlaylist, Spankwire, Spiegel, sport.francetvinfo.fr, Sport5, SportBox, SportDeutschland, spotify, spotify:show, Spreaker, SpreakerPage, SpreakerShow, SpreakerShowPage, SpringboardPlatform, Sprout, sr:mediathek, SRGSSR, SRGSSRPlay, stanfordoc, Steam, Stitcher, StitcherShow, Streamable, streamcloud.eu, StreamCZ, StreetVoice, StretchInternet, stv:player, SunPorno, sverigesradio:episode, sverigesradio:publication, SVT, SVTPage, SVTPlay, SVTSeries, SWRMediathek, Syfy, SztvHu, t-online.de, Tagesschau, tagesschau:player, Tass, TBS, TDSLifeway, Teachable, TeachableCourse, teachertube, teachertube:user:collection, TeachingChannel, Teamcoco, TeamTreeHouse, TechTalks, techtv.mit.edu, ted, Tele13, Tele5, TeleBruxelles, Telecinco, Telegraaf, TeleMB, TeleQuebec, TeleQuebecEmission, TeleQuebecLive, TeleQuebecSquat, TeleQuebecVideo, TeleTask, Telewebion, TennisTV, TenPlay, TestURL, TF1, TFO, TheIntercept, ThePlatform, ThePlatformFeed, TheScene, TheStar, TheSun, TheWeatherChannel, ThisAmericanLife, ThisAV, ThisOldHouse, TikTok, TikTokUser (CURRENTLY BROKEN), tinypic, TMZ, TMZArticle, TNAFlix, TNAFlixNetworkEmbed, toggle, ToonGoggles, tou.tv, Toypics, ToypicsUser, TrailerAddict (CURRENTLY BROKEN), Trilulilu, Trovo, TrovoVod, TruNews, TruTV, Tube8, TubiTv, Tumblr, tunein:clip, tunein:program, tunein:shortener, tunein:station, tunein:topic, TunePk, Turbo, tv.dfb.de, TV2, tv2.hu, TV2Article, TV2DK, TV2DKBornholmPlay, TV4, TV5MondePlus, tv5unis, tv5unis:video, tv8.it, TVA, TVANouvelles, TVANouvellesArticle, TVC, TVCArticle, TVer, tvigle, tvland.com, TVN24, TVNet, TVNoe, TVNow, TVNowAnnual, TVNowNew, TVNowSeason, TVNowShow, tvp, tvp:embed, tvp:series, TVPlayer, TVPlayHome, Tweakers, TwitCasting, twitch:clips, twitch:stream, twitch:vod, TwitchCollection, TwitchVideos, TwitchVideosClips, TwitchVideosCollections, twitter, twitter:amplify, twitter:broadcast, twitter:card, udemy, udemy:course, UDNEmbed, UFCArabia, UFCTV, UKTVPlay, umg:de, UnicodeBOM, Unistra, Unity, uol.com.br, uplynk, uplynk:preplay, Urort, URPlay, USANetwork, USAToday, ustream, ustream:channel, ustudio, ustudio:embed, Varzesh3, Vbox7, VeeHD, Veoh, Vesti, Vevo, VevoPlaylist, VGTV, vh1.com, vhx:embed, Viafree, vice, vice:article, vice:show, Vidbit, Viddler, Videa, video.google:search, video.sky.it, video.sky.it:live, VideoDetective, videofy.me, videomore, videomore:season, videomore:video, VideoPress, Vidio, VidLii, vidme, vidme:user, vidme:user:likes, vier, vier:videos, viewlift, viewlift:embed, Viidea, viki, viki:channel, vimeo, vimeo:album, vimeo:channel, vimeo:group, vimeo:likes, vimeo:ondemand, vimeo:review, vimeo:user, vimeo:watchlater, Vimple, Vine, vine:user, Viqeo, Viu, viu:ott, viu:playlist, Vivo, vk, vk:uservideos, vk:wallpost, vlive, vlive:channel, vlive:post, Vodlocker, VODPl, VODPlatform, VoiceRepublic, Voot, VoxMedia, VoxMediaVolume, vpro, Vrak, VRT, VrtNU, vrv, vrv:series, VShare, VTM, VTXTV, vube, VuClip, VVVVID, VVVVIDShow, VyboryMos, Vzaar, Wakanim, Walla, WalyTV, washingtonpost, washingtonpost:article, wat.tv, WatchBox, WatchIndianPorn, WDR, wdr:mobile, WDRElefant, WDRPage, Webcaster, WebcasterFeed, WebOfStories, WebOfStoriesPlaylist, Weibo, WeiboMobile, WeiqiTV, Wistia, WistiaPlaylist, wnl, WorldStarHipHop, WSJ, WSJArticle, WWE, XBef, XboxClips, XFileShare, XHamster, XHamsterEmbed, XHamsterUser, xiami:album, xiami:artist, xiami:collection, xiami:song, ximalaya, ximalaya:album, XMinus, XNXX, Xstream, XTube, XTubeUser, Xuite, XVideos, XXXYMovies, Yahoo, yahoo:gyao, yahoo:gyao:player, yahoo:japannews, YandexDisk, yandexmusic:album, yandexmusic:artist:albums, yandexmusic:artist:tracks, yandexmusic:playlist, yandexmusic:track, YandexVideo, YapFiles, YesJapan, yinyuetai:video, Ynet, YouJizz, youku, youku:show, YouNowChannel, YouNowLive, YouNowMoment, YouPorn, YourPorn, YourUpload, youtube, youtube:favorites, youtube:history, youtube:playlist, youtube:recommended, youtube:search, youtube:search:date, youtube:subscriptions, youtube:tab, youtube:truncated_id, youtube:truncated_url, youtube:watchlater, YoutubeYtBe, YoutubeYtUser, Zapiks, Zattoo, ZattooLive, ZDF, ZDFChannel, zingmp3, Zype