Package: con-duct Version: 0.8.0-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 79 Depends: neurodebian-popularity-contest, procps, python3:any Recommends: python3-matplotlib Homepage: https://github.com/con/duct/ Priority: optional Section: python Filename: pool/main/c/con-duct/con-duct_0.8.0-1~nd24.04+1_all.deb Size: 18776 SHA256: d64309cc92c354d32130c5d03a955693ee519cf2c2677201deafa27416b76e77 SHA1: 69c6179eb975bec81f6e4a29e420aba9b5508185 MD5sum: b2ae4c470daef0652333ca2dbb5b95b3 Description: lightweight wrapper to collect execution data for a command con-duct provides a duct command which is a lightweight wrapper that collects execution data for an arbitrary command. Execution data includes execution time, system information, and resource usage statistics of the command and all its child processes. It is intended to simplify the problem of recording the resources necessary to execute a command, particularly in an HPC environment. . Resource usage is determined by polling (at a sample-interval). During execution, duct produces a JSON lines file with one data point recorded for each report (at a report-interval). . This package installs the Python library and command-line tools. Package: datalad Version: 1.1.4-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 230 Depends: neurodebian-popularity-contest, python3-datalad (= 1.1.4-1~nd24.04+1), python3-argcomplete (>= 1.12.3), python3:any Suggests: datalad-container Homepage: https://datalad.org Priority: optional Section: science Filename: pool/main/d/datalad/datalad_1.1.4-1~nd24.04+1_all.deb Size: 190692 SHA256: c7e8ae161596889d77d7cc930f31a7574cb6381d895617ec8b1cf52f544aab99 SHA1: d3a0f5c8e415cf5d4f859fb3df02c72e6e4e651e MD5sum: abedbf2f977eeb185c694b80b301f6a2 Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) Package: heudiconv Version: 1.3.2-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 13563 Depends: neurodebian-popularity-contest, python3-dcmstack, python3-filelock, python3-nibabel, python3-nipype, python3-pydicom, python3:any, dcm2niix, python3, python3-dicom, python3-inotify, python3-numpy, python3-tinydb Recommends: python3-pytest, python3-datalad, python3-etelemetry Homepage: https://github.com/nipy/heudiconv Priority: optional Section: science Filename: pool/main/h/heudiconv/heudiconv_1.3.2-1~nd24.04+1_all.deb Size: 8609690 SHA256: 01c81da3471d813ff5ea4e5507a3f9322125f85bea8b7f6949cd4193aa0a5231 SHA1: 8d320ba0eb575c7a6792ad13814389aab54ce463 MD5sum: 3d41a2625faf7b0e3f2a3e9b53300092 Description: DICOM converter with support for structure heuristics This is a flexible dicom converter for organizing brain imaging data into structured directory layouts. It allows for flexible directory layouts and naming schemes through customizable heuristics implementations. It only converts the necessary dicoms, not everything in a directory. It tracks the provenance of the conversion from dicom to nifti in w3c prov format. Package: psychtoolbox-3-common Source: psychtoolbox-3 Version: 3.0.19.14.dfsg1-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 57985 Depends: neurodebian-popularity-contest Recommends: alsa-utils, apriltag, gamemode Suggests: gnuplot Homepage: http://psychtoolbox.org Priority: optional Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-common_3.0.19.14.dfsg1-1~nd24.04+1_all.deb Size: 26769004 SHA256: 757653da3af4377de7852bd7cd91308cf6e21e2560bb4281a54892f2dc9b2cdf SHA1: 50ff08b4effcb56dcf207d428c09b0977dbaeee2 MD5sum: 03a8ea4ffe57e012e82553c2482f1c4a Description: toolbox for vision research -- arch/interpreter independent part Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains architecture independent files (such as .m scripts) Package: python-nipy-doc Source: nipy Version: 0.6.1-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11968 Depends: neurodebian-popularity-contest, libjs-mathjax, libjs-sphinxdoc (>= 7.2.2) Recommends: python3-nipy Built-Using: sphinx (= 7.2.6-6) Multi-Arch: foreign Homepage: https://nipy.org/nipy/ Priority: optional Section: doc Filename: pool/main/n/nipy/python-nipy-doc_0.6.1-1~nd24.04+1_all.deb Size: 2135934 SHA256: 9d8b8a73ffb12015c12eff419f602f8172c5fda7b0f02fbf0f49654085753b84 SHA1: 275a1bdaed5152aaa436e8a018184469d647ea05 MD5sum: 7f897826df6b6bec98866c4c64d5e2d4 Description: documentation and examples for NiPy This package contains NiPy documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation Package: python-nipype-doc Source: nipype Version: 1.9.0-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 12996 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python3-nipype Multi-Arch: foreign Homepage: https://nipype.readthedocs.io/en/latest/ Priority: optional Section: doc Filename: pool/main/n/nipype/python-nipype-doc_1.9.0-1~nd24.04+1_all.deb Size: 1236232 SHA256: a4b02b98709aabd3e06f483125a5a9a9cbecb1db66467555a86f441bf398559e SHA1: 805bbc2fb256cbdd62dd8c6e1cd79dd773514cf2 MD5sum: f1c9d21049e724f6363eb5c3aa43ae44 Description: Neuroimaging data analysis pipelines in Python3 -- documentation Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). . This package contains Nipype examples and documentation in various formats. Package: python3-datalad Source: datalad Version: 1.1.4-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4343 Depends: neurodebian-popularity-contest, git-annex (>= 8.20200309~) | git-annex-standalone (>= 8.20200309~), patool, 7zip (>= 23.01+dfsg-4~) | p7zip-full, python3 (>= 3.7), python3-annexremote, python3-boto3, python3-distro, python3-fasteners (>= 0.14~), python3-gitlab, python3-humanize, python3 (>= 3.10) | python3-importlib-metadata (>= 3.6~), python3 (>= 3.9) | python3-importlib-resources (>= 3.0~), python3-iso8601, python3-keyring, python3-keyrings.alt | python3-keyring (<= 8), python3-msgpack, python3-platformdirs, python3-requests (>= 1.2), python3-secretstorage, python3-typing-extensions (>= 3.10.0.2~), python3-tqdm (>= 4.32.0), python3-chardet, python3-packaging, python3:any Recommends: python3-html5lib, python3-httpretty, python3-lzma, python3-pytest (>= 7.0), python3-pyperclip, python3-requests-ftp, python3-vcr Suggests: python3-duecredit, datalad-container, python3-bs4, python3-numpy Breaks: datalad-container (<< 1.1.2) Homepage: https://datalad.org Priority: optional Section: python Filename: pool/main/d/datalad/python3-datalad_1.1.4-1~nd24.04+1_all.deb Size: 899136 SHA256: 1f026630356b2e2ac4b6cdd3f9031aaec7c271dd3e46236afc76781705faed8a SHA1: e60f2bbca622f2ee24b1a9e70ed820ab0b535b59 MD5sum: 9e78f08a2d28d47ce4a2d4df067bfb1d Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) . This package installs the module for Python 3, and Recommends install all dependencies necessary for searching and managing datasets, publishing, and testing. If you need base functionality, install without Recommends. Package: python3-mesonpy Source: meson-python Version: 0.17.1-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 873 Depends: neurodebian-popularity-contest, libjs-sphinxdoc (>= 7.2.2), meson (>= 1.2.3), ninja-build, python3 (>= 3.11), python3-packaging, python3-pyproject-metadata (>= 0.7.1), python3-tomli | python3-supported-min (>= 3.11), python3:any Recommends: patchelf Homepage: https://github.com/mesonbuild/meson-python Priority: optional Section: python Filename: pool/main/m/meson-python/python3-mesonpy_0.17.1-1~nd24.04+1_all.deb Size: 108158 SHA256: d5faffdc5fb69bfd2435ebcb09a26c16f9761aba28198079b02e1e312e77d12c SHA1: f9fb21f2c654c2297cf3479593ad840c3e14b8ce MD5sum: d613816d2936316215075a2629c98b14 Description: Meson PEP 517 Python build backend This package enables Python package authors to use Meson as the build backend for their packages. . Meson is a build system designed to increase programmer productivity. It does this by providing a fast, simple and easy to use interface for modern software development tools and practices. Package: python3-nipy Source: nipy Version: 0.6.1-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3091 Depends: neurodebian-popularity-contest, python3-numpy, python3-nibabel, python3-scipy, python3-sympy, python3-transforms3d, python3:any, python3-nipy-lib (>= 0.6.1-1~nd24.04+1) Recommends: python3-matplotlib, mayavi2 Suggests: python3-mvpa Homepage: https://nipy.org/nipy/ Priority: optional Section: python Filename: pool/main/n/nipy/python3-nipy_0.6.1-1~nd24.04+1_all.deb Size: 730766 SHA256: dd57e5fcf596cacd848a86a65e372477dcedcda594c22f9e7cc2cae70804b03c SHA1: 3c01664fd57cfd550e1301ab0024fdf81b8acdf1 MD5sum: 6a88045eb3955a17665805e7b83480d1 Description: Analysis of structural and functional neuroimaging data NiPy is a Python-based framework for the analysis of structural and functional neuroimaging data. It provides functionality for - General linear model (GLM) statistical analysis - Combined slice time correction and motion correction - General image registration routines with flexible cost functions, optimizers and re-sampling schemes - Image segmentation - Basic visualization of results in 2D and 3D - Basic time series diagnostics - Clustering and activation pattern analysis across subjects - Reproducibility analysis for group studies Package: python3-nipype Source: nipype Version: 1.9.0-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10890 Depends: neurodebian-popularity-contest, python3-click, python3-dateutil, python3-etelemetry, python3-filelock, python3-looseversion, python3-networkx, python3-nibabel, python3-numpy, python3-packaging, python3-prov, python3-puremagic, python3-rdflib, python3-scipy, python3-simplejson, python3-traits, python3:any, python3-dipy, python3-psutil Recommends: ipython3, python3-pytest, graphviz, python3-xvfbwrapper, mayavi2, python3-pydotplus, python3-pydot, python3-cfflib Suggests: afni, python3-nipy, slicer, matlab-spm8, python3-pyxnat, mne-python, elastix, ants, python3-pytest-xdist, python3-bids Homepage: https://nipype.readthedocs.io/en/latest/ Priority: optional Section: python Filename: pool/main/n/nipype/python3-nipype_1.9.0-1~nd24.04+1_all.deb Size: 1960368 SHA256: f96a64720015249c28b21f6f0455be1a2eb2cf6578dbe8bdcbe0909800be4174 SHA1: 92175b1c11ee3012f6dc334556a71e98e56d9055 MD5sum: 0518b123203e18c6a61d591c704ea1b4 Description: Neuroimaging data analysis pipelines in Python3 Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). Package: python3-tqdm Source: tqdm Version: 4.66.5-1~nd24.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 313 Depends: neurodebian-popularity-contest, python3:any Homepage: https://tqdm.github.io Priority: optional Section: python Filename: pool/main/t/tqdm/python3-tqdm_4.66.5-1~nd24.04+1_all.deb Size: 91578 SHA256: 781b9b414333d45e96d659612971aa7731c629ecae2ce6129da48a79c1323b05 SHA1: 6e7e75ce2780271db7022fa57b082a017bdb1c87 MD5sum: b23d1f8ca1bc4b1d2256d5a595bfa66d Description: fast, extensible progress bar for Python 3 and CLI tool tqdm (read taqadum, تقدّم) means “progress” in Arabic. tqdm instantly makes your loops show a smart progress meter, just by wrapping any iterable with "tqdm(iterable)". . This package contains the Python 3 version of tqdm and its command-line tool.