Package: afni-atlases Source: afni-data Version: 0.20180120-1.1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 109419 Homepage: http://afni.nimh.nih.gov Priority: extra Section: science Filename: pool/main/a/afni-data/afni-atlases_0.20180120-1.1_all.deb Size: 98215048 SHA256: b7b30ce4345671d92cb08f939b76de42f81a6839abe3d47dba1db0620fe64e0c SHA1: 792d6506cc866acfa54fc71475f823e686f169f7 MD5sum: deaddf5e6992face9b5edeb62644187c Description: standard space brain atlases for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provide AFNI's standard space brain templates in HEAD/BRIK format. Package: condor-doc Source: condor Version: 7.8.8~dfsg.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 6118 Depends: neurodebian-popularity-contest Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: doc Filename: pool/main/c/condor/condor-doc_7.8.8~dfsg.1-2~nd12.10+1_all.deb Size: 1459068 SHA256: 70cd94e29bc3de42c5c146f1f9f5ffb1aad113b7960a666463ab2ddfa1b71f27 SHA1: 30b14a0fbfe38945913718bf73a4481068433dc8 MD5sum: 51eea58a6838ad510d31a1e698453a84 Description: distributed workload management system - documentation Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package provides Condor's documentation in HTML and PDF format, as well as configuration and other examples. Package: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 224 Depends: neurodebian-popularity-contest, python3-datalad (= 0.17.5-1~nd+1), python3-argcomplete (>= 1.12.3), python3:any Suggests: datalad-container, datalad-crawler, datalad-neuroimaging Homepage: https://datalad.org Priority: optional Section: science Filename: pool/main/d/datalad/datalad_0.17.5-1~nd+1_all.deb Size: 187092 SHA256: dcfab5ab31ab85c685b4439648c3095efb236b34c92eb2f870fc1376dd0dbab1 SHA1: e8a088bc96e73f10444588eede93689410943c07 MD5sum: a4020bc221d05979fe1738d432660717 Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) Package: dh-systemd Source: init-system-helpers Version: 1.18~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 28 Depends: neurodebian-popularity-contest, perl, debhelper Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/dh-systemd_1.18~nd12.10+1_all.deb Size: 14620 SHA256: bf7b2ab7e7c67ed35093c0600e82e024e210442af83b5291222d3764d97747f7 SHA1: e19aed66704d3245733387acf805a7bfce5759c1 MD5sum: 96c9546698ff696dd93dd7c4cda54945 Description: debhelper add-on to handle systemd unit files dh-systemd provides a debhelper sequence addon named 'systemd' and the dh_systemd_enable/dh_systemd_start commands. . The dh_systemd_enable command adds the appropriate code to the postinst, prerm and postrm maint scripts to properly enable/disable systemd service files. The dh_systemd_start command deals with start/stop/restart on upgrades for systemd-only service files. Package: eeglab11-sampledata Source: eeglab11 Version: 11.0.0.0~b~dfsg.1-1~nd11.10+1+nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8109 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/e/eeglab11/eeglab11-sampledata_11.0.0.0~b~dfsg.1-1~nd11.10+1+nd12.04+1+nd12.10+1_all.deb Size: 7224818 SHA256: 25bbf59e6baaa0fd1f795f650fc89e2fc7f1c9bed1172b1adfe766a6a9b64be4 SHA1: 5b471b69135beae6f699377fdfcb606d1fcb972e MD5sum: dd4f89591443db2aab3bfc912c908f2e Description: sample EEG data for EEGLAB tutorials EEGLAB is sofwware for processing continuous or event-related EEG or other physiological data. . This package provide some tutorial data files shipped with the EEGLAB distribution. Package: fail2ban Version: 0.8.13-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 563 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), lsb-base (>= 2.0-7) Recommends: iptables, whois, python-pyinotify Suggests: python-gamin, mailx, system-log-daemon Homepage: http://www.fail2ban.org Priority: optional Section: net Filename: pool/main/f/fail2ban/fail2ban_0.8.13-1~nd12.10+1_all.deb Size: 185322 SHA256: 2bb2ebe9112bbb6ac0c3d4335fde2ccf37e0107470704cc55158db833f5e0dd9 SHA1: eb8c1efc3668e5740c92edf0322b50cd903685c6 MD5sum: 49148819312ad251247be1b09c05af7a Description: ban hosts that cause multiple authentication errors Fail2ban monitors log files (e.g. /var/log/auth.log, /var/log/apache/access.log) and temporarily or persistently bans failure-prone addresses by updating existing firewall rules. Fail2ban allows easy specification of different actions to be taken such as to ban an IP using iptables or hostsdeny rules, or simply to send a notification email. . By default, it comes with filter expressions for various services (sshd, apache, qmail, proftpd, sasl etc.) but configuration can be easily extended for monitoring any other text file. All filters and actions are given in the config files, thus fail2ban can be adopted to be used with a variety of files and firewalls. Package: fis-gtm Version: 6.0-003-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 36 Depends: neurodebian-popularity-contest, fis-gtm-6.0-003 Provides: mumps Homepage: http://sourceforge.net/projects/fis-gtm Priority: optional Section: database Filename: pool/main/f/fis-gtm/fis-gtm_6.0-003-2~nd12.10+1_all.deb Size: 15120 SHA256: 762846b83191f876adc982d82c66721e0313d08f66e8cbac869884aba967465c SHA1: 245775b0f7b559a19238eb149d58bda1159e58fb MD5sum: 27c4df4625883b96140b941bcced3e28 Description: metapackage for the latest version of FIS-GT.M database GT.M is a database engine with scalability proven in large real-time transaction processing systems that have thousands of concurrent users, individual database file sizes to the Terabyte range (with virtually unlimited aggregate database sizes). Yet the light footprint of GT.M allows it to also scale down for use in small applications and software appliances (virtual machines). . The GT.M data model is hierarchical associative memory (i.e., multi-dimensional array) that imposes no restrictions on the data types of the indexes or content - the application logic can impose any schema, dictionary or data organization suited to its problem domain. (Database engines that do not impose schemas, but which allow layered application software to impose and use whatever schema that is appropriate to the application are popularly referred to as "document oriented", "schemaless" or "schema-free" databases.) . GT.M's compiler for the standard M (also known as MUMPS) scripting language implements full support for ACID (Atomic, Consistent, Isolated, Durable) transactions, using optimistic concurrency control and software transactional memory (STM) that resolves the common mismatch between databases and programming languages. Its unique ability to create and deploy logical multi-site configurations of applications provides unrivaled continuity of business in the face of not just unplanned events, but also planned events, including planned events that include changes to application logic and schema. . This metapackage always depends from the default fis-gtm version. Package: fslview-doc Source: fslview Version: 4.0.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2874 Depends: neurodebian-popularity-contest Homepage: http://www.fmrib.ox.ac.uk/fsl/fslview Priority: optional Section: doc Filename: pool/main/f/fslview/fslview-doc_4.0.1-2~nd12.10+1_all.deb Size: 2346536 SHA256: a6eadbe29e5145806b86d93ceb70677028343bbbe7d68af97c8511c3d75d9668 SHA1: cdf1cc15b93159e998a9279d80a5c148995cd5cf MD5sum: ed6f5a1eedcf462bbdd786a35b032a08 Description: Documentation for FSLView This package provides the online documentation for FSLView. . FSLView is part of FSL. Package: git-annex-remote-rclone Version: 0.5-1~ndall+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23 Depends: neurodebian-popularity-contest, git-annex | git-annex-standalone, rclone Homepage: https://github.com/DanielDent/git-annex-remote-rclone Priority: optional Section: utils Filename: pool/main/g/git-annex-remote-rclone/git-annex-remote-rclone_0.5-1~ndall+1_all.deb Size: 7842 SHA256: 0b1d65c740ce1073ecdae6db121d304fe02c4bb95df552326894118a65b38319 SHA1: 34a2323c4387e61c4a69617150c463f9a7b772c5 MD5sum: 00c5a0407a998eba72d4f5eb0ad71189 Description: rclone-based git annex special remote This is a wrapper around rclone to make any destination supported by rclone usable with git-annex. . Cloud storage providers supported by rclone currently include: * Google Drive * Amazon S3 * Openstack Swift / Rackspace cloud files / Memset Memstore * Dropbox * Google Cloud Storage * Microsoft One Drive * Hubic * Backblaze B2 * Yandex Disk . Note: although Amazon Cloud Drive support is implemented, it is broken ATM see https://github.com/DanielDent/git-annex-remote-rclone/issues/22 . Package: gmsl Version: 1.1.5-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 78 Depends: neurodebian-popularity-contest, make Homepage: http://gmsl.sourceforge.net/ Priority: optional Section: devel Filename: pool/main/g/gmsl/gmsl_1.1.5-1~nd12.10+1_all.deb Size: 16576 SHA256: 762129cb91d956af2dc7fb9ccdacd4ff0c9700f131b819e83db42594b4b4916e SHA1: 8b5304577eaaa1d2400254cd0ac1d6c66ab89617 MD5sum: 9a6404648b07e8fc32427b9c4bf750f8 Description: extra functions to extend functionality of GNU Makefiles The GNU Make Standard Library (GMSL) is a collection of functions implemented using native GNU Make functionality that provide list and string manipulation, integer arithmetic, associative arrays, stacks, and debugging facilities. . Note that despite the name of this project, this library is NOT standard and is NOT written or distributed by the GNU project. Package: golang-github-ncw-rclone-dev Source: rclone Version: 1.41-1~ndall0 Architecture: all Maintainer: Debian Go Packaging Team Installed-Size: 2492 Depends: golang-bazil-fuse-dev, golang-github-aws-aws-sdk-go-dev, golang-github-mreiferson-go-httpclient-dev, golang-github-ncw-go-acd-dev, golang-github-ncw-swift-dev, golang-github-pkg-errors-dev, golang-github-pkg-sftp-dev, golang-github-rfjakob-eme-dev, golang-github-skratchdot-open-golang-dev, golang-github-spf13-cobra-dev, golang-github-spf13-pflag-dev, golang-github-stacktic-dropbox-dev, golang-github-stretchr-testify-dev, golang-github-tsenart-tb-dev, golang-github-unknwon-goconfig-dev, golang-github-vividcortex-ewma-dev, golang-golang-x-crypto-dev, golang-golang-x-net-dev, golang-golang-x-oauth2-google-dev, golang-golang-x-sys-dev, golang-golang-x-text-dev, golang-google-api-dev Homepage: https://github.com/ncw/rclone Priority: optional Section: devel Filename: pool/main/r/rclone/golang-github-ncw-rclone-dev_1.41-1~ndall0_all.deb Size: 399416 SHA256: 528b53f3312375d31d5cebb95472a57272cf242e14a92cfdf99c45be2ff5511d SHA1: 75f8871fd668e815023267a857b37ad60b9d1c2f MD5sum: a87865eafe10185420838e2e4ffd7b55 Description: go source code of rclone Rclone is a program to sync files and directories between the local file system and a variety of commercial cloud storage providers. . This package contains rclone's source code. Package: guacamole Source: guacamole-client Version: 0.8.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 475 Depends: neurodebian-popularity-contest, guacd Recommends: libguac-client-vnc0 Suggests: tomcat6 | jetty Homepage: http://guac-dev.org/ Priority: extra Section: net Filename: pool/main/g/guacamole-client/guacamole_0.8.3-1~nd12.10+1_all.deb Size: 428588 SHA256: 9fe31295bdb7f985557eef13d55fdc2f9d2420edb3a32fb3e6217508d88fddde SHA1: f92e6e61aa0b69d6aeb2a6800f5a5074e9ac1ac0 MD5sum: 1cd439407b3d83fb5a4f8a1061627c39 Description: HTML5 web application for accessing remote desktops Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. Package: guacamole-tomcat Source: guacamole-client Version: 0.8.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11 Depends: neurodebian-popularity-contest, debconf, guacamole, tomcat6, libguac-client-vnc0, debconf (>= 0.5) | debconf-2.0 Homepage: http://guac-dev.org/ Priority: extra Section: net Filename: pool/main/g/guacamole-client/guacamole-tomcat_0.8.3-1~nd12.10+1_all.deb Size: 6948 SHA256: 5c0bf2422be06b3517798b82f880d9201c307a3ddf3cd40712ac96ec8721c45b SHA1: a1232d96884124049e2db55b9fb8efb06cf23324 MD5sum: 420333707c4a6d9dc554374310de3ae9 Description: Tomcat-based Guacamole install with VNC support Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. . This metapackage depends on Tomcat, Guacamole, and the VNC support plugin for guacamole. Guacamole is automatically installed and configured under Tomcat. Package: incf-nidash-oneclick-clients Source: incf-nidash-oneclick Version: 2.0-1~nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 28 Depends: neurodebian-popularity-contest, python (>= 2.5.0), python-dicom, dcmtk, python-httplib2 Homepage: http://xnat.incf.org/ Priority: extra Section: science Filename: pool/main/i/incf-nidash-oneclick/incf-nidash-oneclick-clients_2.0-1~nd12.04+1+nd12.10+1_all.deb Size: 9726 SHA256: 34850e6858d784f40edaa883e66923b867c1262d92203a3ccde4cd38fc505897 SHA1: efa6a60304adb482d61201f9187f1fb23807d12b MD5sum: 0f86d558162919041ff81fb2e7129410 Description: utility for pushing DICOM data to the INCF datasharing server A command line utility for anonymizing and sending DICOM data to the XNAT image database at the International Neuroinformatics Coordinating Facility (INCF). This tool is maintained by the INCF NeuroImaging DataSharing (NIDASH) task force. Package: init-system-helpers Version: 1.18~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 29 Depends: neurodebian-popularity-contest, perl Breaks: systemd (<< 44-12) Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/init-system-helpers_1.18~nd12.10+1_all.deb Size: 14316 SHA256: fd7e86808b81627c653cccd1f102fae547c5b2f6539f2c12fe9a79963aa23198 SHA1: c858af2208ebb7ce09f7ebddae3d18623345fb76 MD5sum: 66729a4fdd94ae20e2a7a6114e195e98 Description: helper tools for all init systems This package contains helper tools that are necessary for switching between the various init systems that Debian contains (e.g. sysvinit, upstart, systemd). An example is deb-systemd-helper, a script that enables systemd unit files without depending on a running systemd. . While this package is maintained by pkg-systemd-maintainers, it is NOT specific to systemd at all. Maintainers of other init systems are welcome to include their helpers in this package. Package: insighttoolkit4-examples Source: insighttoolkit4 Version: 4.2.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2677 Depends: neurodebian-popularity-contest Suggests: libinsighttoolkit4-dev Conflicts: insighttoolkit-examples Replaces: insighttoolkit-examples Homepage: http://www.itk.org/ Priority: optional Section: devel Filename: pool/main/i/insighttoolkit4/insighttoolkit4-examples_4.2.1-2~nd12.10+1_all.deb Size: 2408046 SHA256: f305f9f5f32eb0cea86116b9f9d34e45db54bd58624c88d66c5cfba336057917 SHA1: 6fdcb1f6c217cad141efaba3f65e29de6cb75ffe MD5sum: 58d52adfb2463cbcff45c428a3b9dd59 Description: Image processing toolkit for registration and segmentation - examples ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both. . This package contains the source for example programs. Package: ipython01x Version: 0.13.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, python-argparse, python-configobj, python-decorator, python-pexpect, python-simplegeneric, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-tornado (>= 2.1.0~), python-pygments, python-qt4, python-zmq, python-matplotlib Suggests: ipython01x-doc, python-gobject, python-gtk2, python-numpy, python-profiler Conflicts: ipython-common, python2.3-ipython, python2.4-ipython Replaces: ipython-common, python2.3-ipython, python2.4-ipython Homepage: http://ipython.org/ Priority: optional Section: python Filename: pool/main/i/ipython01x/ipython01x_0.13.2-1~nd12.10+1_all.deb Size: 1286312 SHA256: 0582d740bc1f1a33af6a517f3511e3a66a52dbdcd00890473a96edc5c1a4f293 SHA1: 51bf8ad39c9f17cd47810354efe508807b0b53a6 MD5sum: 47a6395e7135f8958d2b1f7efaf874c2 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This is a non-official, custom build of IPython post 0.11 with notebooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-doc Source: ipython01x Version: 0.13.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16663 Depends: neurodebian-popularity-contest, libjs-jquery, ipython01x Homepage: http://ipython.org/ Priority: optional Section: doc Filename: pool/main/i/ipython01x/ipython01x-doc_0.13.2-1~nd12.10+1_all.deb Size: 7237370 SHA256: 901a02593af0166028b3e79042c6ad3130382b573bd332cc0219725f42049cd3 SHA1: d01041ef99be7cbacf2e202edb4855294f66a49b MD5sum: b52f37cc8eff0d3f508b0abd5794c8c1 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This package contains the documentation. . This is a non-official, custom build of IPython post 0.11 with workbooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-notebook Source: ipython01x Version: 0.13.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-notebook_0.13.2-1~nd12.10+1_all.deb Size: 898 SHA256: ca759cce540d54f6faf0b3c3f024cde830e8f4afee0f0081a627485dd83b51ec SHA1: 4fb2e204a1cce5b1053949570576995682d2f190 MD5sum: 8fdd7c8bd7fed9054acc92b9648a231f Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships notebook functionality inside. It is made so to stay in line to modularization of official ipython package in Debian. There is no real good reason to install this package. Package: ipython01x-parallel Source: ipython01x Version: 0.13.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: oldlibs Filename: pool/main/i/ipython01x/ipython01x-parallel_0.13.2-1~nd12.10+1_all.deb Size: 826 SHA256: 66d11d9ddd9ce8b7982ebb1f21efb41203b441715e83674c3d54d0a03500280b SHA1: 1791024f575769c9162827490cbbce02e92fa708 MD5sum: 159dc968ca74420c8f1f4835a9619370 Description: enhanced interactive Python shell This is a transitional package and can be safely removed after the installation is complete. Package: ipython01x-qtconsole Source: ipython01x Version: 0.13.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-qtconsole_0.13.2-1~nd12.10+1_all.deb Size: 908 SHA256: 28d34754ea400f26f869a25832d9e62f075f1a8c7773410823781db08a990511 SHA1: 61e9b6c0a2c6c81aa181a5472faa82368c94bd49 MD5sum: 1ffc5191748f4538a3938123150e4953 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships qt console functionality inside. It is made so to stay in line to modularization of the official ipython package in Debian. There is no real good reason to install this package. Package: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11748 Depends: neurodebian-popularity-contest, python-argparse, python-configobj, python-decorator, python-pexpect, python-simplegeneric, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-tornado (>= 2.1.0~), python-pygments, python-qt4, python-zmq, python-matplotlib Suggests: ipython1x-doc, python-gobject, python-gtk2, python-numpy, python-profiler Conflicts: ipython-common, python2.3-ipython, python2.4-ipython Replaces: ipython-common, python2.3-ipython, python2.4-ipython Homepage: http://ipython.org/ Priority: optional Section: python Filename: pool/main/i/ipython1x/ipython1x_1.1.0+git7-gf5891e9-1~nd12.10+1_all.deb Size: 4486410 SHA256: 736400f7973324f547cde68b4495c695df3be455d21316441abef34b94f30c8f SHA1: 11439c8742beac83c18694028b08831c8e9dbde0 MD5sum: 64c040b8244d5905cbc5cb440014eda1 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This is a non-official, custom build of IPython post 0.11 with notebooks support. It provides IPython1X module thus not conflicting with system-wide installed IPython Package: ipython1x-doc Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10402 Depends: neurodebian-popularity-contest, libjs-jquery, ipython1x Homepage: http://ipython.org/ Priority: optional Section: doc Filename: pool/main/i/ipython1x/ipython1x-doc_1.1.0+git7-gf5891e9-1~nd12.10+1_all.deb Size: 4197232 SHA256: 54f15949e35b176dc76b435868d4b41be25d7bef03de177b74e8d810378cbabf SHA1: e56a1947f903519397290718e35473e086fad8b8 MD5sum: ecb6af94b7bf4556a1a6ad52065af551 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This package contains the documentation. . This is a non-official, custom build of IPython post 0.11 with workbooks support. It provides IPython1X module thus not conflicting with system-wide installed IPython Package: ipython1x-notebook Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython1x/ipython1x-notebook_1.1.0+git7-gf5891e9-1~nd12.10+1_all.deb Size: 914 SHA256: f060593ed7aaaaa70c57d2ad3a4da77596bdd88d13ce4d2a09a822a648ce7ba7 SHA1: 2c687e1f890b6002bfb0874b9b1edb428692a996 MD5sum: fc65a087e74f388c657ff76a5c29e40e Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython1x which ships notebook functionality inside. It is made so to stay in line to modularization of official ipython package in Debian. There is no real good reason to install this package. Package: ipython1x-parallel Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: oldlibs Filename: pool/main/i/ipython1x/ipython1x-parallel_1.1.0+git7-gf5891e9-1~nd12.10+1_all.deb Size: 840 SHA256: 1c5fe5d12434f7ecccbb99781d07fba227d3d63e57588fdbb73c1c512c33ea2f SHA1: 068a3f7dc68de828844e22337bf7c66866851644 MD5sum: ee4e8a9b9f7da8c5c35f1ea3574892cb Description: enhanced interactive Python shell This is a transitional package and can be safely removed after the installation is complete. Package: ipython1x-qtconsole Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython1x/ipython1x-qtconsole_1.1.0+git7-gf5891e9-1~nd12.10+1_all.deb Size: 926 SHA256: 50c17367c4fbc48221f18b06766d93acee59eda00e3cd333e6974d153e745eaf SHA1: 8c35c5da8f0b2f41492fd1c9754a30feb5f8c603 MD5sum: 9a930750646f00932add092379abc9d6 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython1x which ships qt console functionality inside. It is made so to stay in line to modularization of the official ipython package in Debian. There is no real good reason to install this package. Package: libmia-2.0-doc Source: mia Version: 2.0.13-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 12246 Depends: neurodebian-popularity-contest, libjs-jquery Enhances: libmia-2.0-dev Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/m/mia/libmia-2.0-doc_2.0.13-1~nd12.10+1_all.deb Size: 740884 SHA256: a3cef5b37527c4e46347f6a24ed7e4cc17dc8d1f200233bfd796fa16410b045e SHA1: 67d6e7cdc5cc765ee24a7b506fbe1836457c18ca MD5sum: 71e0dbe3f8a25387eadc509bdf2e867f Description: library for 2D and 3D gray scale image processing, documentation libmia comprises a set of libraries and plug-ins for general purpose 2D and 3D gray scale image processing and basic handling of triangular meshes. The libraries provide a basic infrastructure and generic algorithms, that can be specialized by specifying the apropriate plug-ins. This package provides the Doxygen generated API reference. Package: libmialm-doc Source: libmialm Version: 1.0.7-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 232 Depends: neurodebian-popularity-contest Suggests: devhelp Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/libm/libmialm/libmialm-doc_1.0.7-2~nd12.10+1_all.deb Size: 25100 SHA256: 9d24e887ce66dc2fcc0bb388205752bac3ad802678a2a3b98430631b9815bd3b SHA1: 29251dfeaad0d1fb8443cfdd4432eb9ddd28a1e1 MD5sum: a3d7cf62c8110dab85b1f461d917958a Description: Documentation for the MIA landmark library This library implements handling for landmarks and 3D view positioning for optimal landmark visibility, and in-and output of these landmarks. This library is part of the MIA tool chain for medical image analysis. This package contains the library documentation. Package: libopenwalnut1-doc Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 43478 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://www.openwalnut.org Priority: extra Section: doc Filename: pool/main/o/openwalnut/libopenwalnut1-doc_1.4.0~rc1+hg3a3147463ee2-1~nd12.10+1_all.deb Size: 5036764 SHA256: ffce752e04f08e0f6d195d03638d167a198ceb62ee71bb995c4d86da0e3580a9 SHA1: fc4fe3cef3820f59e0d0b72e42a7d14d0ede70cc MD5sum: d60bd069da5862a556e8219212fa2f1e Description: Developer documentation for the OpenWalnut visualization framework OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the core API documentation of OpenWalnut. Package: matlab-support-dev Source: matlab-support Version: 0.0.19~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7 Depends: neurodebian-popularity-contest Conflicts: matlab-dev (<= 0.0.14~) Replaces: matlab-dev (<= 0.0.14~) Priority: optional Section: devel Filename: pool/main/m/matlab-support/matlab-support-dev_0.0.19~nd12.10+1_all.deb Size: 7226 SHA256: 3b786fa3329b2dba487558a85109d9045b41d99dd546eb01be7c9e6050850421 SHA1: 18fdd673cdfc665496abe1840fc586a3453a4a4d MD5sum: 89d8df01031330fa00c9d7ebd3851bb2 Description: helpers for packages building MATLAB toolboxes This package provides a Makefile snippet (analogous to the one used for Octave) that configures the locations for architecture independent M-files, binary MEX-extensions, and their corresponding sources. This package can be used as a build-dependency by other packages shipping MATLAB toolboxes. Package: mia-tools-doc Source: mia Version: 2.0.13-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1134 Depends: neurodebian-popularity-contest Enhances: mia-tools Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/m/mia/mia-tools-doc_2.0.13-1~nd12.10+1_all.deb Size: 72738 SHA256: ea57d5cbf90bc014c702260c372d3d1d67a87d09ce380a3364cc5e9c88367154 SHA1: 67a949ece0931f47f8bc09572f30589d981eb75a MD5sum: 944bb963e73dffa0679bef5c5cd0616f Description: Cross-referenced documentation of the MIA command line tools Cross referenced documentation of the command line tools and plug-ins that are provided by the MIA gray scale image processing tool chain. These lines tools to provide the means to run general purpose image processing tasks on 2D and 3D gray scale images, and basic operations on triangular meshes interactively from the command line. Supported image processing algorithms are image filtering, combining, image registration, motion compensation for image series, and the estimation of various statistics over images. Package: mricron-data Source: mricron Version: 0.20130828.1~dfsg.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1710 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: science Filename: pool/main/m/mricron/mricron-data_0.20130828.1~dfsg.1-1~nd12.10+1_all.deb Size: 1664526 SHA256: 3fb87f58bf34e7b888148d05c9062ed174dfc6d67eabef8e7197f01049a4ddc5 SHA1: aa35d50b5549bebfbb76b31d102c6f68ed99f0c5 MD5sum: 7f5cd27752b5330ca67b207bf2c42e0c Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides data files for MRIcron, such as brain atlases, anatomy, and color schemes. Package: mricron-doc Source: mricron Version: 0.20130828.1~dfsg.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1019 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: doc Filename: pool/main/m/mricron/mricron-doc_0.20130828.1~dfsg.1-1~nd12.10+1_all.deb Size: 737512 SHA256: c5c488fa91d85838c86c7fa26a46cca8f62c97d7f53cd1ca26d191739c15ec10 SHA1: 6560362c05712ac4eec11eed1039e9b3a20a32a7 MD5sum: 570ce9919852d15fb456e7d71521d8d3 Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides documentation for MRIcron in HTML format. Package: mrtrix-doc Source: mrtrix Version: 0.2.12-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 3522 Depends: neurodebian-popularity-contest Homepage: http://www.brain.org.au/software/mrtrix Priority: extra Section: doc Filename: pool/main/m/mrtrix/mrtrix-doc_0.2.12-1~nd12.10+1_all.deb Size: 3316734 SHA256: ffb9179eff5de97c4a25d8228bbfc97c2cb3f5f574863a52a7bdf5bf49d6a71b SHA1: 20944b3ae82d8bc6061e5803dda2f9bca076d8d0 MD5sum: ccea32bd10184537add644407be303ea Description: documentation for mrtrix Set of tools to perform diffusion-weighted MRI white matter tractography of the brain in the presence of crossing fibres, using Constrained Spherical Deconvolution, and a probabilisitic streamlines algorithm. Magnetic resonance images in DICOM, ANALYZE, or uncompressed NIfTI format are supported. . This package provides the documentation in HTML format. Package: neurodebian-desktop Source: neurodebian Version: 0.32~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 142 Depends: ssh-askpass-gnome | ssh-askpass, desktop-base, gnome-icon-theme, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-desktop_0.32~nd12.10+1_all.deb Size: 115544 SHA256: 997c34e18532f1519f964fd0f01922cd79cebd8ec803ff30d17a583424f5987f SHA1: 983c2f829d1c86a1a697e4465dad3645cf671a5f MD5sum: 3a1082a75bcd3c2a61aa2de30b93ff49 Description: neuroscience research environment This package contains NeuroDebian artwork (icons, background image) and a NeuroDebian menu featuring most popular neuroscience tools automatically installed upon initial invocation. Package: neurodebian-dev Source: neurodebian Version: 0.32~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6842 Depends: devscripts, cowbuilder, neurodebian-keyring Recommends: python, zerofree, moreutils, time, ubuntu-keyring, debian-archive-keyring, apt-utils Suggests: virtualbox-ose, virtualbox-ose-fuse Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-dev_0.32~nd12.10+1_all.deb Size: 6433058 SHA256: 0bce63bec60ba98190e62fd00b771900a9bdc481843cdfd5e3040ceea7a69209 SHA1: 434ffe9db1293cb480ac3ecde1eacccf99e5b2ec MD5sum: 7886f3d9151d4a846797d37abe29d831 Description: NeuroDebian development tools neuro.debian.net sphinx website sources and development tools used by NeuroDebian to provide backports for a range of Debian/Ubuntu releases. Package: neurodebian-guest-additions Source: neurodebian Version: 0.32~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 107 Pre-Depends: virtualbox-ose-guest-utils, virtualbox-ose-guest-x11, virtualbox-ose-guest-dkms Depends: sudo, neurodebian-desktop, gdm | lightdm, zenity Recommends: chromium-browser, update-manager-gnome, update-notifier Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-guest-additions_0.32~nd12.10+1_all.deb Size: 15356 SHA256: 3feaa8729d9810220475cc190e248c0641f1df7882b3f90e31a53e53c0153a10 SHA1: 47c193c7a0457a6ae2acb616fae239e3b85bfd3a MD5sum: fc60a300c919fc123d763c7d353dda7c Description: NeuroDebian guest additions (DO NOT INSTALL OUTSIDE VIRTUALBOX) This package configures a Debian installation as a guest operating system in a VirtualBox-based virtual machine for NeuroDebian. . DO NOT install this package unless you know what you are doing! For example, installation of this package relaxes several security mechanisms. Package: neurodebian-keyring Source: neurodebian Version: 0.32~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8 Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-keyring_0.32~nd12.10+1_all.deb Size: 7620 SHA256: 00714ca2abc1fbbeb3e20a4ab02e525c76702c31ee0e5f1c6cd4910dffffd804 SHA1: 3e4da753b269fe942bf7a7cc98529d0c50580cbf MD5sum: c3280db44a03f7a24432ef4a1f2332a8 Description: GnuPG archive keys of the NeuroDebian archive The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-popularity-contest Source: neurodebian Version: 0.32~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7 Depends: popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-popularity-contest_0.32~nd12.10+1_all.deb Size: 6842 SHA256: 2ea6b014fede56401405c49d0e20fc4fd0f032635c5b835d8e6181a0221f4fe5 SHA1: 0d6aaabd6c49940debbeeb9881efb294d569ebd5 MD5sum: a992c797281ace1552960e36eae0c7fc Description: Helper for NeuroDebian popularity contest submissions This package is a complement to the generic popularity-contest package to enable anonymous submission of usage statistics to NeuroDebian in addition to the popcon submissions to the underlying distribution (e.g. Debian or Ubuntu) popcon server. . Your participation in popcon is important for following reasons: - Popular packages receive more attention from developers, bugs are fixed faster and updates are provided quicker. - Assure that we do not drop support for a previous release of Debian or Ubuntu while are active users. - User statistics could be used by upstream research software developers to acquire funding for continued development. . It has an effect only if you have decided to participate in the Popularity Contest of your distribution, i.e. Debian or Ubuntu. You can always enable or disable your participation in popcon by running 'dpkg-reconfigure popularity-contest' as root. Package: nifti2dicom-data Source: nifti2dicom Version: 0.4.7-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 606 Depends: neurodebian-popularity-contest Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/nifti2dicom-data_0.4.7-1~nd12.10+1_all.deb Size: 614874 SHA256: 2349e656c2548a65180a295ee1920dbd0c3ec486655efed1476bf525e30e7c87 SHA1: f37e4ffd40812c39351a3f6955e367ec84d94634 MD5sum: 8266465c6835f7d99ee700160c0b7bba Description: data files for nifti2dicom This package contains architecture-independent supporting data files required for use with nifti2dicom, such as such as documentation, icons, and translations. Package: nuitka Version: 0.5.3.3+ds-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2167 Depends: neurodebian-popularity-contest, g++-4.9 | g++-4.8 | g++-4.7 | g++-4.6 (>= 4.6.1) | g++-4.5 | g++-4.4 | clang (>= 3.0), scons (>= 2.0.0), python-dev (>= 2.6.6-2), python (>= 2.7.1-0ubuntu2) Recommends: python-lxml (>= 2.3), python-qt4 (>= 4.8.6), strace Suggests: ccache Homepage: http://nuitka.net Priority: optional Section: python Filename: pool/main/n/nuitka/nuitka_0.5.3.3+ds-1~nd12.10+1_all.deb Size: 576308 SHA256: d0b9baedd0ac1b6da841c02852ba389f3893106502e215d18cec05f3da438766 SHA1: 55494b4a3bdee2a82ca87d07e0db324b93e9dc64 MD5sum: 6a3e674a987b8f074b6efe2e20dd78eb Description: Python compiler with full language support and CPython compatibility This Python compiler achieves full language compatibility and compiles Python code into compiled objects that are not second class at all. Instead they can be used in the same way as pure Python objects. Package: opensesame Version: 0.27.4-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 26639 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-qt4, python-pygame (>= 1.8.1~), python-numpy (>= 1.3.0~), python-qscintilla2, gnome-icon-theme Recommends: python-serial (>= 2.3~), psychopy (>= 1.64.0), python-pyaudio (>= 0.2.4), python-imaging (>= 1.1.7), python-opengl (>= 3.0.1), expyriment (>= 0.5.2), ipython-qtconsole (>= 0.12), python-markdown Homepage: http://www.cogsci.nl/software/opensesame Priority: extra Section: science Filename: pool/main/o/opensesame/opensesame_0.27.4-2~nd12.10+1_all.deb Size: 25359348 SHA256: a8f655afbee639aaf3da3ec8202075a75f66ab7874a216a9f781004dbc800442 SHA1: 98b2189e951cf648607c5e85982a5d8d0230a06b MD5sum: 9788a7f1338030b731637400e91e769b Description: graphical experiment builder for the social sciences This graphical environment provides an easy to use, point-and-click interface for creating psychological experiments. In addition to a powerful sketchpad for creating visual stimuli, OpenSesame features a sampler and synthesizer for sound playback. For more complex tasks, OpenSesame supports Python scripting using the built-in editor with syntax highlighting. Package: packaging-tutorial Version: 0.8~nd0 Architecture: all Maintainer: Lucas Nussbaum Installed-Size: 1550 Priority: extra Section: doc Filename: pool/main/p/packaging-tutorial/packaging-tutorial_0.8~nd0_all.deb Size: 1488332 SHA256: 491bc5917f698fee06888998e8a295a6caac2950148bb160b457aff72437eadb SHA1: c5d75d04b01f681ead660ce8d8fe068ab887fba0 MD5sum: 8fbf7c362fd4091a78c50404eb694402 Description: introduction to Debian packaging This tutorial is an introduction to Debian packaging. It teaches prospective developers how to modify existing packages, how to create their own packages, and how to interact with the Debian community. In addition to the main tutorial, it includes three practical sessions on modifying the 'grep' package, and packaging the 'gnujump' game and a Java library. Package: psychopy Version: 1.79.00+git16-g30c9343.dfsg-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 12186 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-pyglet | python-pygame, python-opengl, python-numpy, python-scipy, python-matplotlib, python-lxml, python-configobj Recommends: python-wxgtk2.8, python-pyglet, python-pygame, python-openpyxl, python-imaging, python-serial, python-pyo, libavbin0, libxxf86vm1, ipython Suggests: python-iolabs, python-pyxid Homepage: http://www.psychopy.org Priority: optional Section: science Filename: pool/main/p/psychopy/psychopy_1.79.00+git16-g30c9343.dfsg-1~nd12.10+1_all.deb Size: 8109578 SHA256: 74f50d493ca583eb39f282ce24479faec9ca03531685b5b99db05283223c415e SHA1: 6fb4fb7c0b47bd3052d6d90be2b368d0732d359c MD5sum: 9ed7beb29de8eae469b81ddd455d2183 Description: environment for creating psychology stimuli in Python PsychoPy provides an environment for creating psychology stimuli using Python scripting language. It combines the graphical strengths of OpenGL with easy Python syntax to give psychophysics a free and simple stimulus presentation and control package. . The goal is to provide, for the busy scientist, tools to control timing and windowing and a simple set of pre-packaged stimuli and methods. PsychoPy features . - IDE GUI for coding in a powerful scripting language (Python) - Builder GUI for rapid development of stimulation sequences - Use of hardware-accelerated graphics (OpenGL) - Integration with Spectrascan PR650 for easy monitor calibration - Simple routines for staircase and constant stimuli experimental methods as well as curve-fitting and bootstrapping - Simple (or complex) GUIs via wxPython - Easy interfaces to joysticks, mice, sound cards etc. via PyGame - Video playback (MPG, DivX, AVI, QuickTime, etc.) as stimuli Python-Version: 2.7 Package: psychtoolbox-3-common Source: psychtoolbox-3 Version: 3.0.11.20140705.dfsg1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 58450 Depends: neurodebian-popularity-contest Recommends: subversion Suggests: gnuplot Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-common_3.0.11.20140705.dfsg1-1~nd12.10+1_all.deb Size: 24805026 SHA256: 147014a082af5f8fd427a8b412840921ee89139b5685a4ecac01ed6e71a2714c SHA1: 672bbdcbd8392ac446d7f9a27252e1dd8fd99fe7 MD5sum: e548ec47ff81f09211870b7c200b8457 Description: toolbox for vision research -- arch/interpreter independent part Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains architecture independent files (such as .m scripts) Package: python-brian Source: brian Version: 1.4.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2336 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-brian-lib (>= 1.4.1-1~nd12.10+1), python-matplotlib (>= 0.90.1), python-numpy (>= 1.3.0), python-scipy (>= 0.7.0) Recommends: python-sympy Suggests: python-brian-doc, python-nose, python-cherrypy Homepage: http://www.briansimulator.org/ Priority: extra Section: python Filename: pool/main/b/brian/python-brian_1.4.1-1~nd12.10+1_all.deb Size: 549134 SHA256: 02dc3313fbccc63980a6663e502845d6006df630a9dcac9163438bbe2ee28fe5 SHA1: bf16c73002c99dd728f618a5c4f6dbe54ccc9ed6 MD5sum: fc9f21a9b990da87150cdbaccae59802 Description: simulator for spiking neural networks Brian is a clock-driven simulator for spiking neural networks. It is designed with an emphasis on flexibility and extensibility, for rapid development and refinement of neural models. Neuron models are specified by sets of user-specified differential equations, threshold conditions and reset conditions (given as strings). The focus is primarily on networks of single compartment neuron models (e.g. leaky integrate-and-fire or Hodgkin-Huxley type neurons). Features include: - a system for specifying quantities with physical dimensions - exact numerical integration for linear differential equations - Euler, Runge-Kutta and exponential Euler integration for nonlinear differential equations - synaptic connections with delays - short-term and long-term plasticity (spike-timing dependent plasticity) - a library of standard model components, including integrate-and-fire equations, synapses and ionic currents - a toolbox for automatically fitting spiking neuron models to electrophysiological recordings Package: python-brian-doc Source: brian Version: 1.4.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6811 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-brian Homepage: http://www.briansimulator.org/ Priority: extra Section: doc Filename: pool/main/b/brian/python-brian-doc_1.4.1-1~nd12.10+1_all.deb Size: 2250674 SHA256: cd2074565599bfe932b248d9d1f3b6d33c746815828186699b8cb23d26f6a39f SHA1: 6ae3811f66847618b743ad140810e9d82f260fad MD5sum: f5d39f86c6b658c2642f6f0244e9c109 Description: simulator for spiking neural networks - documentation Brian is a clock-driven simulator for spiking neural networks. . This package provides user's manual (in HTML format), examples and demos. Package: python-dicom Source: pydicom Version: 0.9.8-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1814 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-numpy, python-imaging Suggests: python-matplotlib Homepage: http://code.google.com/p/pydicom/ Priority: optional Section: python Filename: pool/main/p/pydicom/python-dicom_0.9.8-1~nd12.10+1_all.deb Size: 422940 SHA256: af521bf093cc8c71c8039bdd76dce8891d4209c3cd1a2841c1c3b876abff993c SHA1: 4286252cb68549abd23c25d13752bafef47d422f MD5sum: 5801cbf768e93d58d880887da237461f Description: DICOM medical file reading and writing pydicom is a pure Python module for parsing DICOM files. DICOM is a standard (http://medical.nema.org) for communicating medical images and related information such as reports and radiotherapy objects. . pydicom makes it easy to read DICOM files into natural pythonic structures for easy manipulation. Modified datasets can be written again to DICOM format files. Package: python-dipy Source: dipy Version: 0.7.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2952 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-dipy-lib (>= 0.7.1-1~nd12.10+1) Recommends: python-matplotlib, python-vtk, python-nose, python-nibabel, python-tables Suggests: ipython Provides: python2.7-dipy Homepage: http://nipy.org/dipy Priority: extra Section: python Filename: pool/main/d/dipy/python-dipy_0.7.1-1~nd12.10+1_all.deb Size: 1884578 SHA256: 5383b87b584a6b9c17a14a7c5515a33e7c95251d8d9a87b195c8359b6319e13e SHA1: a047dd75c32b168030a3bf70d35f0d5de0302541 MD5sum: 2ecdae3a2b01d93ee943eb32ca288107 Description: toolbox for analysis of MR diffusion imaging data Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. It features: - Reconstruction algorithms, e.g. GQI, DTI - Tractography generation algorithms, e.g. EuDX - Intelligent downsampling of tracks - Ultra fast tractography clustering - Resampling datasets with anisotropic voxels to isotropic - Visualizing multiple brains simultaneously - Finding track correspondence between different brains - Warping tractographies into another space, e.g. MNI space - Reading many different file formats, e.g. Trackvis or NIfTI - Dealing with huge tractographies without memory restrictions - Playing with datasets interactively without storing Python-Version: 2.7 Package: python-dipy-doc Source: dipy Version: 0.7.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9455 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-dipy Homepage: http://nipy.org/dipy Priority: extra Section: doc Filename: pool/main/d/dipy/python-dipy-doc_0.7.1-1~nd12.10+1_all.deb Size: 7619572 SHA256: 14e0208005254ec8fdbeaabba5d0e43f1547b55735442d8e26d0b98db9a313dd SHA1: d01d082e1ed52a28226936afc2f756e0b8f35b06 MD5sum: bf3840476cc54b3fe62f8d5db0aac3c5 Description: toolbox for analysis of MR diffusion imaging data -- documentation Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. . This package provides the documentation in HTML format. Package: python-expyriment Version: 0.7.0+git34-g55a4e7e-3~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2413 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-support (>= 0.90.0), python-pygame (>= 1.9.1~), python-opengl (>= 3.0.0), ttf-freefont, libjs-jquery, libjs-underscore Recommends: python-serial (>= 2.5~), python-numpy (>= 1.3.0~) Suggests: python-parallel (>= 0.2), python-pyxid Homepage: http://www.expyriment.org Priority: optional Section: science Filename: pool/main/p/python-expyriment/python-expyriment_0.7.0+git34-g55a4e7e-3~nd12.10+1_all.deb Size: 841848 SHA256: e0cf460680a9bce096f122649c490fa05f38abe03f1194778ef3192a4b37acfa SHA1: df470567708bd074ffb485d99a3c5243ca0d9ded MD5sum: 3e6f6f5155612e943d8d4b2ec4535bf3 Description: Python library for cognitive and neuroscientific experiments Expyriment is a light-weight Python library for designing and conducting timing-critical behavioural and neuroimaging experiments. The major goal is to provide a well-structured Python library for a script-based experiment development with a high priority on the readability of the resulting programme code. Due to the availability of an Android runtime environment, Expyriment is also suitable for the development of experiments running on tablet PCs or smart-phones. Package: python-joblib Source: joblib Version: 0.8.2+git7-g0211f4c-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 264 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-numpy, python-nose, python-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python-joblib_0.8.2+git7-g0211f4c-1~nd12.10+1_all.deb Size: 75174 SHA256: 186f42af83b53fd598aaad1b57ce4359da9a613bc40df1fc659bd8f99ce68f0a SHA1: 45d8abefafaded6f53fc4089d7ef96ffa4ea8005 MD5sum: 3788a356c3c091b904038d21facba392 Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: . - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. . This package contains the Python 2 version. Package: python-mdp Source: mdp Version: 3.3+git6-g7bbd889-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1495 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Recommends: python-scipy, python-libsvm, python-joblib, python-scikits-learn | python-sklearn, python-pp Suggests: python-py, shogun-python-modular Enhances: python-mvpa Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python-mdp_3.3+git6-g7bbd889-1~nd12.10+1_all.deb Size: 478636 SHA256: b207ab09eba4efd4f211c30dfcad14fd1d186545f49161e0e577ae0070383bf6 SHA1: 12d82087d31fb3448cfa153cc7f6ca57e64e7272 MD5sum: 528bbc072c4a59d025f381b676c3c6f8 Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 2. Package: python-mne Version: 0.7.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6208 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-sklearn, python-matplotlib, python-joblib (>= 0.4.5), xvfb, xauth, libgl1-mesa-dri, help2man Recommends: python-nose, mayavi2 Suggests: python-dap, ipython Provides: python2.7-mne Homepage: http://martinos.org/mne Priority: optional Section: python Filename: pool/main/p/python-mne/python-mne_0.7.3-1~nd12.10+1_all.deb Size: 4053382 SHA256: 651a71b573fd80df58c593a574338dade8160fa4b32bfbf4955444c9e51a7444 SHA1: 7ab0cc979718f2666824e59f0a6dcd35c81229da MD5sum: d31bde5e5c7c85c3aca178312d9b1431 Description: Python modules for MEG and EEG data analysis This package is designed for sensor- and source-space analysis of MEG and EEG data, including frequency-domain and time-frequency analyses and non-parametric statistics. Package: python-mpi4py-doc Source: mpi4py Version: 1.3.1+hg20131106-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 256 Depends: neurodebian-popularity-contest, libjs-sphinxdoc (>= 1.0) Suggests: python-mpi4py Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: doc Filename: pool/main/m/mpi4py/python-mpi4py-doc_1.3.1+hg20131106-1~nd12.10+1_all.deb Size: 73324 SHA256: 1ed10f44ad496322cee2dea2c7886996090d6363fcf360ade19a0c43443a4e63 SHA1: b01291971feb3ab05bbb75c059aaaee1fd05c7b7 MD5sum: 20373b6dc3dc6152c037855faf9cf83a Description: bindings of the MPI standard -- documentation MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). . This package provides HTML rendering of the user's manual. Package: python-mvpa2 Source: pymvpa2 Version: 2.3.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6541 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7.1-0ubuntu2), python-numpy, python2.7, python-mvpa2-lib (>= 2.3.1-1~nd12.10+1) Recommends: python-h5py, python-lxml, python-matplotlib, python-mdp, python-nibabel, python-nipy, python-psutil, python-psyco, python-pywt, python-reportlab, python-scipy, python-sklearn, shogun-python-modular, liblapack-dev, python-pprocess Suggests: fslview, fsl, python-mvpa2-doc, python-nose, python-openopt, python-rpy2 Provides: python2.7-mvpa2 Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa2/python-mvpa2_2.3.1-1~nd12.10+1_all.deb Size: 3907346 SHA256: 774587ac0ae6d4507130d65479dfd83cd008002251924f8702d08e22306eb5b4 SHA1: 0a3d72a350bba77180f58f8dac784026d55fac21 MD5sum: 5a8f900c9d9648c0f3011786f4b5ca61 Description: multivariate pattern analysis with Python v. 2 PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. . This is a package of PyMVPA v.2. Previously released stable version is provided by the python-mvpa package. Python-Version: 2.7 Package: python-mvpa2-doc Source: pymvpa2 Version: 2.3.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 27410 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-mvpa2, python-mvpa2-tutorialdata, ipython-notebook Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa2/python-mvpa2-doc_2.3.1-1~nd12.10+1_all.deb Size: 6495808 SHA256: 7757c57816a65afc9df7af1f57a182c1973b871eb09760b79b5e92888fc36634 SHA1: 5567d7c8a20cc5e9a0e96a0461380fa3540fb958 MD5sum: 2a30159016373fed7ff3d9a33dd63838 Description: documentation and examples for PyMVPA v. 2 This is an add-on package for the PyMVPA framework. It provides a HTML documentation (tutorial, FAQ etc.), and example scripts. In addition the PyMVPA tutorial is also provided as IPython notebooks. Package: python-neo Source: neo Version: 0.3.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2913 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy (>= 1:1.3~), python-quantities (>= 0.9.0~) Recommends: python-scipy (>= 0.8~), python-tables (>= 2.2~), libjs-jquery, libjs-underscore Suggests: python-nose Homepage: http://neuralensemble.org/trac/neo Priority: extra Section: python Filename: pool/main/n/neo/python-neo_0.3.3-1~nd12.10+1_all.deb Size: 1506672 SHA256: 385f2845a121616b6954376f865c22defe8887b1b737d55c4c36c1da9bcc09bd SHA1: d11ff902c18bccac760558cc4e3c3b01bfe96693 MD5sum: 614ac2896bb0697992dd4b9a3aff9a0c Description: Python IO library for electrophysiological data formats NEO stands for Neural Ensemble Objects and is a project to provide common classes and concepts for dealing with electro-physiological (in vivo and/or simulated) data to facilitate collaborative software/algorithm development. In particular Neo provides: a set a classes for data representation with precise definitions, an IO module with a simple API, documentation, and a set of examples. . NEO offers support for reading data from numerous proprietary file formats (e.g. Spike2, Plexon, AlphaOmega, BlackRock, Axon), read/write support for various open formats (e.g. KlustaKwik, Elan, WinEdr, WinWcp, PyNN), as well as support common file formats, such as HDF5 with Neo-structured content (NeoHDF5, NeoMatlab). . Neo's IO facilities can be seen as a pure-Python and open-source Neuroshare replacement. Package: python-neurosynth Source: neurosynth Version: 0.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 83 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-nibabel, python-ply Recommends: python-nose, fsl-mni152-templates Suggests: python-testkraut Homepage: http://neurosynth.org Priority: extra Section: python Filename: pool/main/n/neurosynth/python-neurosynth_0.3-1~nd12.10+1_all.deb Size: 32522 SHA256: e80820c4671a0a34814a7a8143fa543947f8703740d507bed2ca3ba3f6c6a7c4 SHA1: bacb76a1b901d346fb1ffa550743fff2822b5de1 MD5sum: c4a14f27e10461cadd2b5657a41dd841 Description: large-scale synthesis of functional neuroimaging data NeuroSynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. This Python module at the moment provides functionality for processing the database of collected terms and spatial coordinates to generate associated spatial statistical maps. Package: python-nibabel Source: nibabel Version: 1.3.0-1~nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4152 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-dicom, python-fuse Suggests: python-nibabel-doc Provides: python2.7-nibabel Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: python Filename: pool/main/n/nibabel/python-nibabel_1.3.0-1~nd12.04+1+nd12.10+1_all.deb Size: 1816340 SHA256: f4393634a41ed4334f5833115835ac674f8fd2f0aaac8a8acecaed5d841b37f2 SHA1: 6e07b237d683b17e0807de6d3faaf078698e2968 MD5sum: 3ec51142db5c228429cb67563faa3222 Description: Python bindings to various neuroimaging data formats NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package also provides a commandline tools: . - dicomfs - FUSE filesystem on top of a directory with DICOMs - nib-ls - 'ls' for neuroimaging files - parrec2nii - for conversion of PAR/REC to NIfTI images Python-Version: 2.7 Package: python-nibabel-doc Source: nibabel Version: 1.3.0-1~nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2440 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: doc Filename: pool/main/n/nibabel/python-nibabel-doc_1.3.0-1~nd12.04+1+nd12.10+1_all.deb Size: 444170 SHA256: 01df549d5c4ea10fc4712a4ee44ba0d4f6eb3ac668043365cd5a1063bcfc7bbf SHA1: 229ecd36ecd5903eafc04e3553ba1609d861e9c1 MD5sum: 84cbf46b773013a504beb30c532bd5b4 Description: documentation for NiBabel NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package provides the documentation in HTML format. Package: python-nipy Source: nipy Version: 0.3.0-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2863 Depends: neurodebian-popularity-contest, python (>= 2.5), python-numpy (>= 1:1.2), python-support (>= 0.90.0), python-scipy, python-nibabel, python-nipy-lib (>= 0.3.0-1~nd12.10+1) Recommends: python-matplotlib, mayavi2, python-sympy Suggests: python-mvpa Provides: python2.7-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: python Filename: pool/main/n/nipy/python-nipy_0.3.0-1~nd12.10+1_all.deb Size: 784438 SHA256: 8b25c5d69e46df75985d7370a060691b561963322e0cf3d2cf6b850e5edb030a SHA1: e8544bc3a6b4b6f522387ae82b721b28ccfd5a23 MD5sum: b2c65115481509f8c89a3c4b45ef20d9 Description: Analysis of structural and functional neuroimaging data NiPy is a Python-based framework for the analysis of structural and functional neuroimaging data. It provides functionality for - General linear model (GLM) statistical analysis - Combined slice time correction and motion correction - General image registration routines with flexible cost functions, optimizers and re-sampling schemes - Image segmentation - Basic visualization of results in 2D and 3D - Basic time series diagnostics - Clustering and activation pattern analysis across subjects - Reproducibility analysis for group studies Python-Version: 2.7 Package: python-nipy-doc Source: nipy Version: 0.3.0-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10231 Depends: neurodebian-popularity-contest, libjs-jquery Recommends: python-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: doc Filename: pool/main/n/nipy/python-nipy-doc_0.3.0-1~nd12.10+1_all.deb Size: 3854166 SHA256: e28a2e5f24771f31983880ea2539b2d56b7343e39747f7402e4e8befc9b92ebe SHA1: 0c7fee0614a9f70b7feebf6bf8877cb6384b589b MD5sum: 5903a71ed70da87e6f5decd1c0e0b141 Description: documentation and examples for NiPy This package contains NiPy documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation Package: python-nipype Source: nipype Version: 0.9.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3521 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-scipy, python-simplejson, python-traits (>= 4.0) | python-traits4, python-nibabel (>= 1.0.0~), python-networkx (>= 1.3), python-cfflib Recommends: ipython, python-nose, graphviz Suggests: fsl, afni, python-nipy, slicer, matlab-spm8, python-pyxnat Provides: python2.7-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: python Filename: pool/main/n/nipype/python-nipype_0.9.2-1~nd12.10+1_all.deb Size: 768506 SHA256: 49c66a54489cd082cdf3e9dab853eb55ade4e58953e3212baa74a2d8eb8b9863 SHA1: 24444c6d12350645aaac18294ba485b0cd203b09 MD5sum: 45f14efb6462f3f2c57a42634b42c786 Description: Neuroimaging data analysis pipelines in Python Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). Package: python-nipype-doc Source: nipype Version: 0.9.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16562 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: doc Filename: pool/main/n/nipype/python-nipype-doc_0.9.2-1~nd12.10+1_all.deb Size: 7628582 SHA256: f1632df742b164787dddc9651d6d8b1e33f01b67b2984db7bd331e5e646db818 SHA1: 5af87140a8ec460d5611105fb71aa5a24cefb86a MD5sum: 2a883eb69e98f42954b4efee717a1c64 Description: Neuroimaging data analysis pipelines in Python -- documentation Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). . This package contains Nipype examples and documentation in various formats. Package: python-nitime Source: nitime Version: 0.5-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9348 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-matplotlib, python-nose, python-nibabel, python-networkx Homepage: http://nipy.org/nitime Priority: extra Section: python Filename: pool/main/n/nitime/python-nitime_0.5-1~nd12.10+1_all.deb Size: 3927906 SHA256: 24a2cf0890d0ab8fc4ba316f8fa88f8fe9f1ccc2b16c5ad3509f837a5039cb40 SHA1: 8897c50514e2df04b9d26fb81b48044623cc95b3 MD5sum: 5d6b5d04c8060bd448494d33eafb6670 Description: timeseries analysis for neuroscience data (nitime) Nitime is a Python module for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code. Package: python-nitime-doc Source: nitime Version: 0.5-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7688 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nitime Homepage: http://nipy.org/nitime Priority: extra Section: doc Filename: pool/main/n/nitime/python-nitime-doc_0.5-1~nd12.10+1_all.deb Size: 6064124 SHA256: d249697ec176a09ea4dcf9b5004060f2932c374bd9659d909e84f8782a8a6902 SHA1: 56ec00f69c98d010875ef93184ce081d12437608 MD5sum: f3fa588b045ce77fd680576c75b4fc72 Description: timeseries analysis for neuroscience data (nitime) -- documentation Nitime is a Python module for time-series analysis of data from neuroscience experiments. . This package provides the documentation in HTML format. Package: python-numpydoc Source: numpydoc Version: 0.4-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 118 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-sphinx (>= 1.0.1) Suggests: python-matplotlib Homepage: https://github.com/numpy/numpy/tree/master/doc/sphinxext Priority: optional Section: python Filename: pool/main/n/numpydoc/python-numpydoc_0.4-1~nd12.10+1_all.deb Size: 30412 SHA256: 69286113b5a55d69cb678348c5def36e411ca1d3fcccc40147772c0dc3850fb7 SHA1: 783da78413d2584dbd9508a2798439297a582ab8 MD5sum: 59fa2ab64f55e586a1158e987b3fccbe Description: Sphinx extension to support docstrings in Numpy format This package defines several extensions for the Sphinx documentation system, shipped in the numpydoc Python package. In particular, these provide support for the Numpy docstring format in Sphinx. Package: python-openpyxl Source: openpyxl Version: 1.7.0+ds1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 452 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0) Recommends: python-nose, python-pil, python-imaging Homepage: http://bitbucket.org/ericgazoni/openpyxl/ Priority: optional Section: python Filename: pool/main/o/openpyxl/python-openpyxl_1.7.0+ds1-1~nd12.10+1_all.deb Size: 91944 SHA256: aac5edf5e1da27719c1ea0f966d707d7f30e23e185275a96206477e4572f6905 SHA1: 6f3b5e945cf128a2e4eb980867d81c1f3d642763 MD5sum: 8752f99e2660973f4ab657fbd3eb5406 Description: module to read/write OpenXML xlsx/xlsm files Openpyxl is a pure Python module to read/write Excel 2007 (OpenXML) xlsx/xlsm files. Package: python-pandas Source: pandas Version: 0.14.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8987 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-dateutil, python-tz, python-numpy (>= 1:1.6~), python-pandas-lib (>= 0.14.1-1~nd12.10+1), python-six Recommends: python-scipy, python-matplotlib, python-tables, python-numexpr, python-xlrd, python-statsmodels, python-openpyxl, python-xlwt, python-bs4, python-html5lib Suggests: python-pandas-doc Provides: python2.7-pandas Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python-pandas_0.14.1-1~nd12.10+1_all.deb Size: 1666532 SHA256: 04f008050395b5cf6b395639cc84b83ed0fdd7926d7dc31b384ccc5c176f0b7c SHA1: a1cc60f302d7dcc94b4f9be67e7752a6445081ee MD5sum: 0d5a6b40b701dac0060b8e4f9bfe72cb Description: data structures for "relational" or "labeled" data pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the Python 2 version. Package: python-patsy Source: patsy Version: 0.2.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 542 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Recommends: python-pandas Suggests: python-patsy-doc Homepage: http://github.com/pydata/patsy Priority: optional Section: python Filename: pool/main/p/patsy/python-patsy_0.2.1-2~nd12.10+1_all.deb Size: 141568 SHA256: 5bca35f73298245448dcb82952b274ea7e927dcc63aa009cf9f95368bcafed2b SHA1: 9ed716d8627550a4585b8b3cc70ebdeb1063c69c MD5sum: de486187c148c1514db9f55207929889 Description: statistical models in Python using symbolic formulas patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. . This package contains the Python 2 version. Package: python-patsy-doc Source: patsy Version: 0.2.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 827 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-patsy Homepage: http://github.com/pydata/patsy Priority: optional Section: doc Filename: pool/main/p/patsy/python-patsy-doc_0.2.1-2~nd12.10+1_all.deb Size: 275022 SHA256: d295e8264406f14d3173ecaa61440b0fd0795109f836ac333a33854d6895175b SHA1: a15b8d176cfbaa940394022b8424b1966c12acf8 MD5sum: 77a7c966687f1e7ceb48eb4fd33c89ef Description: documentation and examples for patsy This package contains documentation and example scripts for python-patsy. Package: python-pp Source: parallelpython Version: 1.6.2-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 119 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.parallelpython.com/ Priority: optional Section: python Filename: pool/main/p/parallelpython/python-pp_1.6.2-2~nd12.10+1_all.deb Size: 34266 SHA256: ef38c6a84e0c4aa56fda6059fd9e1b9915a4786241c4aaa3b59bc7a718f76e48 SHA1: c5aba371df92f863489b7edaf6d3d020ae612157 MD5sum: 7f84a40d07feaa43a5e794c65f09531b Description: parallel and distributed programming toolkit for Python Parallel Python module (pp) provides an easy and efficient way to create parallel-enabled applications for SMP computers and clusters. pp module features cross-platform portability and dynamic load balancing. Thus application written with PP will parallelize efficiently even on heterogeneous and multi-platform clusters (including clusters running other application with variable CPU loads). Python-Version: 2.7 Package: python-pprocess Source: pprocess Version: 0.5-1+nd0~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 716 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.boddie.org.uk/python/pprocess.html Priority: optional Section: python Filename: pool/main/p/pprocess/python-pprocess_0.5-1+nd0~nd12.10+1_all.deb Size: 108526 SHA256: ac7668cdb64b47774df9762de24b9aac50627bad6be6a84fdec04dcca4815eed SHA1: f76663f91f47b7c9b293a0bf0f76f505708a7445 MD5sum: f432ca6d15707941a736616d0fe09023 Description: elementary parallel programming for Python The pprocess module provides elementary support for parallel programming in Python using a fork-based process creation model in conjunction with a channel-based communications model implemented using socketpair and poll. On systems with multiple CPUs or multicore CPUs, processes should take advantage of as many CPUs or cores as the operating system permits. Python-Version: 2.7 Package: python-pyepl-common Source: pyepl Version: 1.1.0+git12-g365f8e3-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 813 Depends: neurodebian-popularity-contest, python Homepage: http://pyepl.sourceforge.net/ Priority: optional Section: python Filename: pool/main/p/pyepl/python-pyepl-common_1.1.0+git12-g365f8e3-2~nd12.10+1_all.deb Size: 818246 SHA256: 0f890f242946179ede870f8f6d471620a72dfbbadd15577833bf809a3c7eac2d SHA1: d31707fdcec00b44e28f6c102153f0770be45572 MD5sum: 7b705e0884f0e7035a0c94606da120a9 Description: module for coding psychology experiments in Python PyEPL is a stimuli delivery and response registration toolkit to be used for generating psychology (as well as neuroscience, marketing research, and other) experiments. . It provides - presentation: both visual and auditory stimuli - responses registration: both manual (keyboard/joystick) and sound (microphone) time-stamped - sync-pulsing: synchronizing your behavioral task with external acquisition hardware - flexibility of encoding various experiments due to the use of Python as a description language - fast execution of critical points due to the calls to linked compiled libraries . This toolbox is here to be an alternative for a widely used commercial product E'(E-Prime) . This package provides common files such as images. Package: python-pymc-doc Source: pymc Version: 2.2+ds-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1840 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Homepage: http://pymc-devs.github.com/pymc/ Priority: extra Section: doc Filename: pool/main/p/pymc/python-pymc-doc_2.2+ds-1~nd12.10+1_all.deb Size: 906858 SHA256: 59074e78f8759a1d2cc3f7798cac2ae5c9991ecf4fd266909ef1252e91bfe6fe SHA1: 0cc0b5fb138b9896e1905ba8f80e97b338fab08b MD5sum: 0073ef238c61a59b8ff50c2f2534d15b Description: Bayesian statistical models and fitting algorithms PyMC is a Python module that implements Bayesian statistical models and fitting algorithms, including Markov chain Monte Carlo. Its flexibility and extensibility make it applicable to a large suite of problems. Along with core sampling functionality, PyMC includes methods for summarizing output, plotting, goodness-of-fit and convergence diagnostics. . This package provides the documentation in HTML format. Package: python-pynn Source: pynn Version: 0.7.5-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 763 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Recommends: python-jinja2, python-cheetah Suggests: python-neuron, python-brian, python-csa Homepage: http://neuralensemble.org/trac/PyNN Priority: extra Section: python Filename: pool/main/p/pynn/python-pynn_0.7.5-1~nd12.10+1_all.deb Size: 175772 SHA256: 6aca773230b5cdc305e46692d4c2e7e6472ac253aae49fdf8c3db2505a64ea27 SHA1: 64017820e9f3c2884c9968983267cda08954bc70 MD5sum: d49969ba06ba7428a644f39639464b5f Description: simulator-independent specification of neuronal network models PyNN allows for coding a model once and run it without modification on any simulator that PyNN supports (currently NEURON, NEST, PCSIM and Brian). PyNN translates standard cell-model names and parameter names into simulator-specific names. Package: python-pyxnat Source: pyxnat Version: 0.9.1+git39-g96bf069-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 862 Depends: neurodebian-popularity-contest, python-lxml, python-simplejson, python-httplib2 (>= 0.7.0) Recommends: python-networkx, python-matplotlib Homepage: http://packages.python.org/pyxnat/ Priority: extra Section: python Filename: pool/main/p/pyxnat/python-pyxnat_0.9.1+git39-g96bf069-1~nd12.10+1_all.deb Size: 190338 SHA256: 08b91ebab764e01025c72071be3e9888c3ce9e07099aade433105d3f5a37ed2d SHA1: d441abc798fb076797de9779a6875840cac0347e MD5sum: 39e65e49f17a5ff4237c5009b77bd45b Description: Interface to access neuroimaging data on XNAT servers pyxnat is a simple Python library that relies on the REST API provided by the XNAT platform since its 1.4 version. XNAT is an extensible database for neuroimaging data. The main objective is to ease communications with an XNAT server to plug-in external tools or Python scripts to process the data. It features: . - resources browsing capabilities - read and write access to resources - complex searches - disk-caching of requested files and resources Package: python-scikits-learn Source: scikit-learn Version: 0.14.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 35 Depends: neurodebian-popularity-contest, python-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: oldlibs Filename: pool/main/s/scikit-learn/python-scikits-learn_0.14.1-1~nd12.10+1_all.deb Size: 33362 SHA256: 1c33d39d40a535ac3d19f592442bd45f719ada613d00b3818256b08204eef2f2 SHA1: 30d9cdc33a765ae1c4a87943d55ed340c69b1330 MD5sum: d499235f6906c4cf140cfa5f067bac85 Description: transitional compatibility package for scikits.learn -> sklearn migration Provides old namespace (scikits.learn) and could be removed if dependent code migrated to use sklearn for clarity of the namespace. Package: python-scikits.statsmodels Source: statsmodels Version: 0.5.0-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9 Depends: neurodebian-popularity-contest, python-statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: oldlibs Filename: pool/main/s/statsmodels/python-scikits.statsmodels_0.5.0-1~nd12.10+1_all.deb Size: 5656 SHA256: 9205e5023254b8545235079b3d56871f5b0ef91da1fc8520fccd4090b33d4b6e SHA1: a86da127752e3c7df815e4ab100fd3741693d19c MD5sum: 14c73067037ecb76a8ffe8f9fbf744d3 Description: transitional compatibility package for statsmodels migration Provides old namespace (scikits.statsmodels) and could be removed if dependent code migrated to use statsmodels for clarity of the namespace. Package: python-skimage Source: skimage Version: 0.8.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4550 Depends: neurodebian-popularity-contest, python (>= 2.6), python-numpy, python-support (>= 0.90.0), python2.7, python-scipy (>= 0.10), python-skimage-lib (>= 0.8.2-1~nd12.10+1), libfreeimage3 Recommends: python-nose, python-matplotlib (>= 1.0), python-imaging, python-qt4 Suggests: python-skimage-doc, python-opencv Provides: python2.7-skimage Homepage: http://scikits-image.org Priority: optional Section: python Filename: pool/main/s/skimage/python-skimage_0.8.2-1~nd12.10+1_all.deb Size: 3236934 SHA256: 2f46fa4f6f6038273d18d340913df6a06d1f94c391174f8be3e1acbfe5200d53 SHA1: d46a4e9d7eb6ba175c80cff5fcd1c34bc6903f2d MD5sum: d6eeadd798be650f718e8217dba098e6 Description: Python modules for image processing scikits-image is a collection of image processing algorithms for Python. It performs tasks such as image loading, filtering, morphology, segmentation, color conversions, and transformations. Package: python-skimage-doc Source: skimage Version: 0.8.2-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 14141 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-skimage Homepage: http://scikits-image.org Priority: optional Section: doc Filename: pool/main/s/skimage/python-skimage-doc_0.8.2-1~nd12.10+1_all.deb Size: 11770002 SHA256: 4026264115ee50d5adb2fb58728a2ac5dacf8633d706b19ab2765c863bb1bbe4 SHA1: 7f17e88420a97503a0e299aa3ce0ff92e8f9eeff MD5sum: e32e1d22e009420ace2fde6cc246af49 Description: Documentation and examples for scikits-image This package contains documentation and example scripts for python-skimage. Package: python-sklearn Source: scikit-learn Version: 0.14.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3549 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-sklearn-lib (>= 0.14.1-1~nd12.10+1), python-joblib (>= 0.4.5) Recommends: python-nose, python-matplotlib Suggests: python-dap, python-scikits-optimization, python-sklearn-doc, ipython Enhances: python-mdp, python-mvpa2 Breaks: python-scikits-learn (<< 0.9~) Replaces: python-scikits-learn (<< 0.9~) Provides: python2.7-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: python Filename: pool/main/s/scikit-learn/python-sklearn_0.14.1-1~nd12.10+1_all.deb Size: 1103664 SHA256: 4274257e77ec37f33dbf8ba4d8d2fc0dafe2f784802a59b5bb1ba99c179ecde6 SHA1: 25495bb28fba89b1bcc609612a7c8adb77bcb8a7 MD5sum: aa0ecceba5b6de7c6a930f39058ed023 Description: Python modules for machine learning and data mining scikit-learn is a collection of Python modules relevant to machine/statistical learning and data mining. Non-exhaustive list of included functionality: - Gaussian Mixture Models - Manifold learning - kNN - SVM (via LIBSVM) Package: python-sklearn-doc Source: scikit-learn Version: 0.14.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 579 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-sklearn Conflicts: python-scikits-learn-doc Replaces: python-scikits-learn-doc Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: doc Filename: pool/main/s/scikit-learn/python-sklearn-doc_0.14.1-1~nd12.10+1_all.deb Size: 190048 SHA256: 05dd054dea4b97e24f0f5db74d282cc07a8630df29014c64d56eb1cbf7831071 SHA1: 78f828431fc8c00ad2b1f06e4c978571894a21e1 MD5sum: d79e9ccef95233d2b58e8e7f6719f2ae Description: documentation and examples for scikit-learn This package contains documentation and example scripts for python-sklearn. Package: python-spyderlib Source: spyder Version: 2.2.5+dfsg-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4009 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), libjs-sphinxdoc (>= 1.0), libjs-jquery, libjs-mathjax, python-qt4 Recommends: ipython-qtconsole, pep8, pyflakes (>= 0.5.0), pylint, python-matplotlib, python-numpy, python-psutil (>= 0.3.0), python-rope, python-scipy, python-sphinx Suggests: tortoisehg, gitk Breaks: spyder (<< 2.0.12-1) Replaces: spyder (<< 2.0.12-1) Provides: python2.7-spyderlib Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: python Filename: pool/main/s/spyder/python-spyderlib_2.2.5+dfsg-1~nd12.10+1_all.deb Size: 1847846 SHA256: 410fc97b1aaf3ce19572d380540abfbfef9a4c3930947076fe64ed238e22a389 SHA1: c03c14e30010e77f54221f88ac9297aa7177b54d MD5sum: 5179ae5b39423d37aab4efae1f01d2fc Description: python IDE for scientists Originally written to design Spyder (the Scientific PYthon Development EnviRonment), the spyderlib Python library provides ready-to-use pure-Python widgets: source code editor with syntax highlighting and code introspection/analysis features, NumPy array editor, dictionary editor, Python console, etc. It's based on the Qt Python binding module PyQt4 (and is compatible with PySide since v2.2). Package: python-spykeutils Source: spykeutils Version: 0.4.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2016 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-scipy, python-quantities, python-neo (>= 0.2.1), python-nose, python-sphinx Recommends: python-guidata, python-guiqwt, python-tables, libjs-jquery, libjs-underscore, python-sklearn (>= 0.11), python-joblib (>= 0.4.5) Provides: python2.7-spykeutils Homepage: https://github.com/rproepp/spykeutils Priority: extra Section: python Filename: pool/main/s/spykeutils/python-spykeutils_0.4.1-1~nd12.10+1_all.deb Size: 404360 SHA256: 492e8547515285efde73af86170b8b8b9926d5c9ae7319aa3d1488e50c99326a SHA1: 29e7f576599efc525fec3e990abea768c90dfafe MD5sum: dccb9dfe63ce55b83639275d9138e3d1 Description: utilities for analyzing electrophysiological data spykeutils is a Python library for analyzing and plotting data from neurophysiological recordings. It can be used by itself or in conjunction with Spyke Viewer, a multi-platform GUI application for navigating electrophysiological datasets. Package: python-statsmodels Source: statsmodels Version: 0.5.0-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 20412 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-statsmodels-lib (>= 0.5.0-1~nd12.10+1), python-patsy Recommends: python-pandas, python-matplotlib, python-nose, python-joblib Conflicts: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Replaces: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Provides: python2.7-statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: python Filename: pool/main/s/statsmodels/python-statsmodels_0.5.0-1~nd12.10+1_all.deb Size: 4680756 SHA256: 3d3c7e62c89e3a41211b263a71a3053a54dd140ec30861957737bfb5074cfeb2 SHA1: 138156f37d9f6e4b60db3731efbb00995185239e MD5sum: becd5acf70629466bd5b8ae68393142c Description: Python module for the estimation of statistical models statsmodels Python module provides classes and functions for the estimation of several categories of statistical models. These currently include linear regression models, OLS, GLS, WLS and GLS with AR(p) errors, generalized linear models for six distribution families and M-estimators for robust linear models. An extensive list of result statistics are available for each estimation problem. Package: python-statsmodels-doc Source: statsmodels Version: 0.5.0-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 29887 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-statsmodels Conflicts: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Replaces: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: doc Filename: pool/main/s/statsmodels/python-statsmodels-doc_0.5.0-1~nd12.10+1_all.deb Size: 7071498 SHA256: 6a4d778e07bdb750628f3cf166f1475de52a228b0ba5a5a522ae2d75bf34eba8 SHA1: 14f1469aa3433ed8a02dd71f3e3239a9358d5662 MD5sum: 30dcd4ada8f5bd78992b3534fb9d51b0 Description: documentation and examples for statsmodels This package contains HTML documentation and example scripts for python-statsmodels. Package: python-surfer Source: pysurfer Version: 0.3+git15-gae6cbb1-1~nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 93 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-nibabel, python-imaging, mayavi2, python-argparse, ipython Recommends: mencoder Homepage: http://pysurfer.github.com Priority: extra Section: python Filename: pool/main/p/pysurfer/python-surfer_0.3+git15-gae6cbb1-1~nd12.04+1+nd12.10+1_all.deb Size: 28082 SHA256: 2a0d8f7bea7b8e7fbe80619282bcd1c0b6874fbc2569c3248451c752f1cdc4dc SHA1: 186db3b9114826618485059e3582945a132d76f5 MD5sum: 7cc577897180b73015b7f99b17c6d04f Description: visualize Freesurfer's data in Python This is a Python package for visualization and interaction with cortical surface representations of neuroimaging data from Freesurfer. It extends Mayavi’s powerful visualization engine with a high-level interface for working with MRI and MEG data. . PySurfer offers both a command-line interface designed to broadly replicate Freesurfer’s Tksurfer program as well as a Python library for writing scripts to efficiently explore complex datasets. Python-Version: 2.7 Package: python-tz Version: 2012c-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 114 Depends: neurodebian-popularity-contest, tzdata, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python-tz_2012c-1~nd12.10+1_all.deb Size: 39078 SHA256: e512dd91a25410d50f9579997ac91ad0112084db3472a4d52ecd2bd4294453d9 SHA1: c84153071fa6e5b7565e216b0312f0ce5c7e5806 MD5sum: ac19c9c5c33c317608e638b9a35d9a32 Description: Python version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). Package: python3-datalad Source: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, git-annex (>= 8.20200309~) | git-annex-standalone (>= 8.20200309~), patool, p7zip-full, python3 (>= 3.7), python3-annexremote, python3-distro, python3-distutils | libpython3-stdlib (<= 3.6.4~rc1-2), python3-fasteners (>= 0.14~), python3-gitlab, python3-humanize, python3-importlib-metadata | python3 (>> 3.10), python3-iso8601, python3-keyring, python3-keyrings.alt | python3-keyring (<= 8), python3-mock, python3-msgpack, python3-pil, python3-platformdirs, python3-requests (>= 1.2), python3-secretstorage, python3-simplejson, python3-six, python3-tqdm, python3-chardet, python3-packaging, python3:any Recommends: python3-boto, python3-exif, python3-html5lib, python3-httpretty, python3-jsmin, python3-libxmp, python3-lzma, python3-mutagen, python3-pytest, python3-pyperclip, python3-requests-ftp, python3-vcr, python3-whoosh Suggests: python3-duecredit, datalad-container, datalad-crawler, datalad-neuroimaging, python3-bs4, python3-numpy Breaks: datalad-container (<< 1.1.2) Homepage: https://datalad.org Priority: optional Section: python Filename: pool/main/d/datalad/python3-datalad_0.17.5-1~nd+1_all.deb Size: 958872 SHA256: 1f3e16c16863bab40ba92405109ab26c78f19e3e86e2b38733a035221c4e7744 SHA1: 873da190eb5ee83576ff519c2d564e1f841abe5b MD5sum: 7a97a6f55929cc103dd60d7783a9565e Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) . This package installs the module for Python 3, and Recommends install all dependencies necessary for searching and managing datasets, publishing, and testing. If you need base functionality, install without Recommends. Package: python3-joblib Source: joblib Version: 0.8.2+git7-g0211f4c-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 250 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~) Recommends: python3-numpy, python3-nose, python3-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python3-joblib_0.8.2+git7-g0211f4c-1~nd12.10+1_all.deb Size: 70918 SHA256: 9ff6a9d4954dd865efc0d93b0160a34f1b440d0f179c5b44ee464bf4039a9425 SHA1: 0b1772d5bda08588e7a2257f88bdfcc29340ee65 MD5sum: 38af697bbc8fb7225297823af5276812 Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: . - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. . This package contains the Python 3 version. Package: python3-mdp Source: mdp Version: 3.3+git6-g7bbd889-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1457 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-numpy Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python3-mdp_3.3+git6-g7bbd889-1~nd12.10+1_all.deb Size: 472468 SHA256: 89e6aaa24e0466c077008ab49d9ee6f262e515e0fdc500f760852be9080d763a SHA1: c64c2e32bb873012649d600340e60dee84346879 MD5sum: f82a99a09536a7744d28e6d286e85450 Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 3. Package: python3-pandas Source: pandas Version: 0.14.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8918 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-dateutil, python3-tz, python3-numpy (>= 1:1.6~), python3-pandas-lib (>= 0.14.1-1~nd12.10+1) Recommends: python3-scipy, python3-matplotlib, python3-numexpr, python3-tables, python3-bs4, python3-html5lib, python3-six Suggests: python-pandas-doc Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python3-pandas_0.14.1-1~nd12.10+1_all.deb Size: 1660914 SHA256: 37e74a6edc2904a188282ff43874be80a88340501fe24bdb3de0431599afa961 SHA1: 98cdf832ca22f375be85cd653d2db51319af4547 MD5sum: 550e0f08f55042aad6ebe318d05a6ba1 Description: data structures for "relational" or "labeled" data - Python 3 pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the Python 3 version. Package: python3-patsy Source: patsy Version: 0.2.1-2~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 537 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-numpy Recommends: python3-pandas Suggests: python-patsy-doc Homepage: http://github.com/pydata/patsy Priority: optional Section: python Filename: pool/main/p/patsy/python3-patsy_0.2.1-2~nd12.10+1_all.deb Size: 140882 SHA256: 790dbc880403be90e950aa27d9ef164637806958ee4c28ad225dd81b9a3821fb SHA1: f3259578b69eea1a6a84d4bee706bfa6a80a5e96 MD5sum: 4d2cbccc19c0671f74389fb9be79a696 Description: statistical models in Python using symbolic formulas patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. . This package contains the Python 3 version. Package: python3-tz Source: python-tz Version: 2012c-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 107 Depends: neurodebian-popularity-contest, tzdata, python3 (>= 3.2.3-3~) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python3-tz_2012c-1~nd12.10+1_all.deb Size: 31094 SHA256: 541debafe90874ce85aa69a2e53d7ada2801158b6f51a6d77c5b53e1555133d5 SHA1: 97f75a58b3b9eecf005f3978a69ec811f3d14c1d MD5sum: bc8c7ae5fb1cfdcc84fd641c71adbdbb Description: Python3 version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). . This package contains the Python 3 version of the library. Package: spm8-common Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 18626 Depends: neurodebian-popularity-contest Recommends: spm8-data, spm8-doc Priority: extra Section: science Filename: pool/main/s/spm8/spm8-common_8.5236~dfsg.1-1~nd12.10+1_all.deb Size: 10739142 SHA256: 9c07d393b038418f4e4a763e102f3b02018fd0e52aac7356912911b3d92be424 SHA1: 98d45be6ebbf81448758f3b8c5e0420c845db0a4 MD5sum: de77f38be5e04af49e0e01c3cdb186f3 Description: analysis of brain imaging data sequences Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the platform-independent M-files. Package: spm8-data Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 73046 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/s/spm8/spm8-data_8.5236~dfsg.1-1~nd12.10+1_all.deb Size: 52166040 SHA256: 15cf207c9cb8767759256119203b890d3927a35e1386c575d97d7c5e1e050100 SHA1: 67fa3daa1f542fdb0129c6641fd94e4761425684 MD5sum: 05fa87de1ddbc8f05bab311ad33b2645 Description: data files for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provide the data files shipped with the SPM distribution, such as various stereotaxic brain space templates and EEG channel setups. Package: spm8-doc Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 9273 Depends: neurodebian-popularity-contest Priority: extra Section: doc Filename: pool/main/s/spm8/spm8-doc_8.5236~dfsg.1-1~nd12.10+1_all.deb Size: 8991192 SHA256: 1b52462aa5d8bdb5add60ea7404d9832ad60fddf0cd83dd4ca5a81bf428ba9bc SHA1: a520b1f65fbcc15468095112f9ad1307f7da1275 MD5sum: bd7595025796fc9c3737b1263a4aa7f3 Description: manual for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the SPM manual in PDF format. Package: spyder Version: 2.2.5+dfsg-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 94 Depends: neurodebian-popularity-contest, python, python-spyderlib (= 2.2.5+dfsg-1~nd12.10+1) Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: devel Filename: pool/main/s/spyder/spyder_2.2.5+dfsg-1~nd12.10+1_all.deb Size: 36084 SHA256: ff3e12ab0f1c318e3aa0d7c6b21781e2be53be974fe20d29f0f41ead4fe4093e SHA1: a3a380a3668420da2aebde720a6128fa9ff4960d MD5sum: 6ad8a92518cdc075b12dc2f3a8d5997e Description: python IDE for scientists Spyder (previously known as Pydee) is a free open-source Python development environment providing MATLAB-like features in a simple and light-weighted software Package: spykeviewer Version: 0.4.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1124 Depends: neurodebian-popularity-contest, python2.7, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-guidata, python-guiqwt (>= 2.1.4), python-spyderlib, python-spykeutils (>= 0.4.0), python-neo (>= 0.2.1), python-matplotlib, python-scipy, python-nose, python-sphinx, python-tables Recommends: libjs-jquery, libjs-underscore, ipython-qtconsole (>= 0.12) Homepage: http://www.ni.tu-berlin.de/software/spykeviewer Priority: extra Section: python Filename: pool/main/s/spykeviewer/spykeviewer_0.4.1-1~nd12.10+1_all.deb Size: 578650 SHA256: 93d3d6425faa6a54a2621dc6730a2c35c3cdef4c3fdc96ea95a2f25d144ed293 SHA1: 3ab946e31432ee5f4e30b63ef424d500439a35e3 MD5sum: 4f606cd8057669b359cf8fc2770233c9 Description: graphical utility for analyzing electrophysiological data Spyke Viewer is a multi-platform GUI application for navigating, analyzing and visualizing electrophysiological datasets. Based on the Neo framework, it works with a wide variety of data formats. Spyke Viewer includes an integrated Python console and a plugin system for custom analyses and plots. Package: stabilitycalc Version: 0.1-1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 119 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy, python-matplotlib, python-scipy, python-nifti Recommends: python-dicom Homepage: https://github.com/bbfrederick/stabilitycalc Priority: extra Section: science Filename: pool/main/s/stabilitycalc/stabilitycalc_0.1-1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1_all.deb Size: 28774 SHA256: 49039b7b76aa244e4ab34fb04efe43f167aa10e762799ff318276089bf7c2acf SHA1: f2a5e4c70779898ef2164710d40febc1320a6116 MD5sum: 03a808a4acccdd5a48c6b8d10f8b96e5 Description: evaluate fMRI scanner stability Command-line tools to calculate numerous fMRI scanner stability metrics, based on the FBIRN quality assurance test protocal. Any 4D volumetric timeseries image in NIfTI format is support input. Output is a rich HTML report. Python-Version: 2.7 Package: testkraut Version: 0.0.1-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 358 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, libjs-underscore, libjs-jquery, python-argparse Recommends: strace, python-scipy, python-colorama, python-apt Homepage: https://github.com/neurodebian/testkraut Priority: extra Section: python Filename: pool/main/t/testkraut/testkraut_0.0.1-1~nd12.10+1_all.deb Size: 102648 SHA256: ea9a0dc6202062ce41b66a99c7636103bbfa784f108edb7e3a3a0ca6eee285bb SHA1: a2ebf2e13a47bb725d76a53f880fb5ca9d4e8abd MD5sum: 375ecec2bf2a9be209520da130d2c74e Description: test and evaluate heterogeneous data processing pipelines This is a framework for software testing. That being said, testkraut tries to minimize the overlap with the scopes of unit testing, regression testing, and continuous integration testing. Instead, it aims to complement these kinds of testing, and is able to re-use them, or can be integrated with them. . In a nutshell testkraut helps to facilitate statistical analysis of test results. In particular, it focuses on two main scenarios: . * Comparing results of a single (test) implementation across different or changing computational environments (think: different operating systems, different hardware, or the same machine before an after a software upgrade). * Comparing results of different (test) implementations generating similar output from identical input (think: performance of various signal detection algorithms). . While such things can be done using other available tools as well, testkraut aims to provide a lightweight, yet comprehensive description of a test run. Such a description allows for decoupling test result generation and analysis – opening up the opportunity to “crowd-source” software testing efforts, and aggregate results beyond the scope of a single project, lab, company, or site. Python-Version: 2.7 Package: vowpal-wabbit-doc Source: vowpal-wabbit Version: 7.3-1~nd12.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 70918 Depends: neurodebian-popularity-contest Recommends: vowpal-wabbit Homepage: http://hunch.net/~vw/ Priority: optional Section: doc Filename: pool/main/v/vowpal-wabbit/vowpal-wabbit-doc_7.3-1~nd12.10+1_all.deb Size: 50202376 SHA256: dc7fd2d40ad8c317ffe38601b1cad124a44d5e1059f649abc1cdaa85da951be7 SHA1: 2a3be7a28b91e82bc980ba1b1091e57c7865607c MD5sum: cf312b9c9a7ed3e5e99368eeddf54aff Description: fast and scalable online machine learning algorithm - documentation Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing . This package contains examples (tests) for vowpal-wabbit. Package: youtube-dl Version: 2021.12.17-1~nd110+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5937 Depends: neurodebian-popularity-contest, python3-pkg-resources, python3:any Recommends: aria2 | wget | curl, ca-certificates, ffmpeg, mpv | mplayer, python3-pyxattr, rtmpdump, python3-pycryptodome Suggests: libfribidi-bin | bidiv, phantomjs Homepage: https://ytdl-org.github.io/youtube-dl/ Priority: optional Section: web Filename: pool/main/y/youtube-dl/youtube-dl_2021.12.17-1~nd110+1_all.deb Size: 1128692 SHA256: 75859d2f34a475fc0f199cd6d2b73e18c29cda44406530964890dcb790008eca SHA1: 09f85f2abc32eb5e9c2ccd6bfd1354ea332b6489 MD5sum: 6d04814be91bd9f85a7d3793ff2a2fb3 Description: downloader of videos from YouTube and other sites youtube-dl is a small command-line program to download videos from YouTube.com and other sites that don't provide direct links to the videos served. . youtube-dl allows the user, among other things, to choose a specific video quality to download (if available) or let the program automatically determine the best (or worst) quality video to grab. It supports downloading entire playlists and all videos from a given user. . Currently supported sites (or features of sites) are: . 1tv, 20min, 220.ro, 23video, 24video, 3qsdn, 3sat, 4tube, 56.com, 5min, 6play, 7plus, 8tracks, 91porn, 9c9media, 9gag, 9now.com.au, abc.net.au, abc.net.au:iview, abcnews, abcnews:video, abcotvs, abcotvs:clips, AcademicEarth:Course, acast, acast:channel, ADN, AdobeConnect, adobetv, adobetv:channel, adobetv:embed, adobetv:show, adobetv:video, AdultSwim, aenetworks, aenetworks:collection, aenetworks:show, afreecatv, AirMozilla, AliExpressLive, AlJazeera, Allocine, AlphaPorno, Amara, AMCNetworks, AmericasTestKitchen, AmericasTestKitchenSeason, anderetijden, AnimeOnDemand, Anvato, aol.com, APA, Aparat, AppleConnect, AppleDaily, ApplePodcasts, appletrailers, appletrailers:section, archive.org, ArcPublishing, ARD, ARD:mediathek, ARDBetaMediathek, Arkena, arte.sky.it, ArteTV, ArteTVEmbed, ArteTVPlaylist, AsianCrush, AsianCrushPlaylist, AtresPlayer, ATTTechChannel, ATVAt, AudiMedia, AudioBoom, audiomack, audiomack:album, AWAAN, awaan:live, awaan:season, awaan:video, AZMedien, BaiduVideo, Bandcamp, Bandcamp:album, Bandcamp:weekly, bangumi.bilibili.com, bbc, bbc.co.uk, bbc.co.uk:article, bbc.co.uk:iplayer:playlist, bbc.co.uk:playlist, BBVTV, Beatport, Beeg, BehindKink, Bellator, BellMedia, Bet, bfi:player, bfmtv, bfmtv:article, bfmtv:live, BibelTV, Bigflix, Bild, BiliBili, BilibiliAudio, BilibiliAudioAlbum, BiliBiliPlayer, BioBioChileTV, Biography, BIQLE, BitChute, BitChuteChannel, BleacherReport, BleacherReportCMS, blinkx, Bloomberg, BokeCC, BongaCams, BostonGlobe, Box, Bpb, BR, BravoTV, Break, brightcove:legacy, brightcove:new, BRMediathek, bt:article, bt:vestlendingen, BusinessInsider, BuzzFeed, BYUtv, Camdemy, CamdemyFolder, CamModels, CamTube, CamWithHer, canalc2.tv, Canalplus, Canvas, CanvasEen, CarambaTV, CarambaTVPage, CartoonNetwork, cbc.ca, cbc.ca:olympics, cbc.ca:player, cbc.ca:watch, cbc.ca:watch:video, CBS, CBSInteractive, CBSLocal, CBSLocalArticle, cbsnews, cbsnews:embed, cbsnews:livevideo, CBSSports, CCMA, CCTV, CDA, CeskaTelevize, CeskaTelevizePorady, channel9, CharlieRose, Chaturbate, Chilloutzone, chirbit, chirbit:profile, cielotv.it, Cinchcast, Cinemax, CiscoLiveSearch, CiscoLiveSession, CJSW, cliphunter, Clippit, ClipRs, Clipsyndicate, CloserToTruth, CloudflareStream, Cloudy, Clubic, Clyp, cmt.com, CNBC, CNBCVideo, CNN, CNNArticle, CNNBlogs, ComedyCentral, ComedyCentralTV, CommonMistakes, CondeNast, CONtv, Corus, Coub, Cracked, Crackle, CrooksAndLiars, crunchyroll, crunchyroll:playlist, CSpan, CtsNews, CTV, CTVNews, cu.ntv.co.jp, Culturebox, CultureUnplugged, curiositystream, curiositystream:collection, CWTV, DailyMail, dailymotion, dailymotion:playlist, dailymotion:user, daum.net, daum.net:clip, daum.net:playlist, daum.net:user, DBTV, DctpTv, DeezerPlaylist, defense.gouv.fr, democracynow, DHM, Digg, DigitallySpeaking, Digiteka, Discovery, DiscoveryGo, DiscoveryGoPlaylist, DiscoveryNetworksDe, DiscoveryVR, Disney, dlive:stream, dlive:vod, Dotsub, DouyuShow, DouyuTV, DPlay, DRBonanza, Dropbox, DrTuber, drtv, drtv:live, DTube, Dumpert, dvtv, dw, dw:article, EaglePlatform, EbaumsWorld, EchoMsk, egghead:course, egghead:lesson, ehftv, eHow, EinsUndEinsTV, Einthusan, eitb.tv, EllenTube, EllenTubePlaylist, EllenTubeVideo, ElPais, Embedly, EMPFlix, Engadget, Eporner, EroProfile, Escapist, ESPN, ESPNArticle, EsriVideo, Europa, EWETV, ExpoTV, Expressen, ExtremeTube, EyedoTV, facebook, FacebookPluginsVideo, faz.net, fc2, fc2:embed, Fczenit, filmon, filmon:channel, Filmweb, FiveThirtyEight, FiveTV, Flickr, Folketinget, FootyRoom, Formula1, FOX, FOX9, FOX9News, Foxgay, foxnews, foxnews:article, FoxSports, france2.fr:generation-what, FranceCulture, FranceInter, FranceTV, FranceTVEmbed, francetvinfo.fr, FranceTVJeunesse, FranceTVSite, Freesound, freespeech.org, FreshLive, FrontendMasters, FrontendMastersCourse, FrontendMastersLesson, FujiTVFODPlus7, Funimation, Funk, Fusion, Fux, Gaia, GameInformer, GameSpot, GameStar, Gaskrank, Gazeta, GDCVault, generic, Gfycat, GiantBomb, Giga, GlattvisionTV, Glide, Globo, GloboArticle, Go, GodTube, Golem, google:podcasts, google:podcasts:feed, GoogleDrive, Goshgay, GPUTechConf, Groupon, hbo, HearThisAt, Heise, HellPorno, Helsinki, HentaiStigma, hetklokhuis, hgtv.com:show, HiDive, HistoricFilms, history:player, history:topic, hitbox, hitbox:live, HitRecord, hketv, HornBunny, HotNewHipHop, hotstar, hotstar:playlist, Howcast, HowStuffWorks, HRTi, HRTiPlaylist, Huajiao, HuffPost, Hungama, HungamaSong, Hypem, ign.com, IGNArticle, IGNVideo, IHeartRadio, iheartradio:podcast, imdb, imdb:list, Imgur, imgur:album, imgur:gallery, Ina, Inc, IndavideoEmbed, InfoQ, Instagram, instagram:tag, instagram:user, Internazionale, InternetVideoArchive, IPrima, iqiyi, Ir90Tv, ITTF, ITV, ITVBTCC, ivi, ivi:compilation, ivideon, Iwara, Izlesene, Jamendo, JamendoAlbum, JeuxVideo, Joj, Jove, JWPlatform, Kakao, Kaltura, Kankan, Karaoketv, KarriereVideos, Katsomo, KeezMovies, Ketnet, khanacademy, khanacademy:unit, KickStarter, KinjaEmbed, KinoPoisk, KonserthusetPlay, KrasView, Ku6, KUSI, kuwo:album, kuwo:category, kuwo:chart, kuwo:mv, kuwo:singer, kuwo:song, la7.it, laola1tv, laola1tv:embed, lbry, lbry:channel, LCI, Lcp, LcpPlay, Le, Lecture2Go, Lecturio, LecturioCourse, LecturioDeCourse, LEGO, Lemonde, Lenta, LePlaylist, LetvCloud, Libsyn, life, life:embed, limelight, limelight:channel, limelight:channel_list, LineTV, linkedin:learning, linkedin:learning:course, LinuxAcademy, LiTV, LiveJournal, LiveLeak, LiveLeakEmbed, livestream, livestream:original, livestream:shortener, LnkGo, loc, LocalNews8, LoveHomePorn, lrt.lt, lynda, lynda:course, m6, mailru, mailru:music, mailru:music:search, MallTV, mangomolo:live, mangomolo:video, ManyVids, Markiza, MarkizaPage, massengeschmack.tv, MatchTV, MDR, MedalTV, media.ccc.de, media.ccc.de:lists, Medialaan, Mediaset, Mediasite, MediasiteCatalog, MediasiteNamedCatalog, Medici, megaphone.fm, Meipai, MelonVOD, META, metacafe, Metacritic, mewatch, Mgoon, MGTV, MiaoPai, minds, minds:channel, minds:group, MinistryGrid, Minoto, miomio.tv, MiTele, mixcloud, mixcloud:playlist, mixcloud:user, MLB, Mms, Mnet, MNetTV, MoeVideo, Mofosex, MofosexEmbed, Mojvideo, Morningstar, Motherless, MotherlessGroup, Motorsport, MovieClips, MovieFap, Moviezine, MovingImage, MSN, mtg, mtv, mtv.de, mtv:video, mtvjapan, mtvservices:embedded, MTVUutisetArticle, MuenchenTV, mva, mva:course, Mwave, MwaveMeetGreet, MyChannels, MySpace, MySpace:album, MySpass, Myvi, MyVidster, MyviEmbed, MyVisionTV, n-tv.de, natgeo:video, NationalGeographicTV, Naver, NBA, nba:watch, nba:watch:collection, NBAChannel, NBAEmbed, NBAWatchEmbed, NBC, NBCNews, nbcolympics, nbcolympics:stream, NBCSports, NBCSportsStream, NBCSportsVPlayer, ndr, ndr:embed, ndr:embed:base, NDTV, NerdCubedFeed, netease:album, netease:djradio, netease:mv, netease:playlist, netease:program, netease:singer, netease:song, NetPlus, Netzkino, Newgrounds, NewgroundsPlaylist, Newstube, NextMedia, NextMediaActionNews, NextTV, Nexx, NexxEmbed, nfl.com (CURRENTLY BROKEN), nfl.com:article (CURRENTLY BROKEN), NhkVod, NhkVodProgram, nhl.com, nick.com, nick.de, nickelodeon:br, nickelodeonru, nicknight, niconico, NiconicoPlaylist, Nintendo, njoy, njoy:embed, NJPWWorld, NobelPrize, NonkTube, Noovo, Normalboots, NosVideo, Nova, NovaEmbed, nowness, nowness:playlist, nowness:series, Noz, npo, npo.nl:live, npo.nl:radio, npo.nl:radio:fragment, Npr, NRK, NRKPlaylist, NRKRadioPodkast, NRKSkole, NRKTV, NRKTVDirekte, NRKTVEpisode, NRKTVEpisodes, NRKTVSeason, NRKTVSeries, NRLTV, ntv.ru, Nuvid, NYTimes, NYTimesArticle, NYTimesCooking, NZZ, ocw.mit.edu, OdaTV, Odnoklassniki, OktoberfestTV, OnDemandKorea, onet.pl, onet.tv, onet.tv:channel, OnetMVP, OnionStudios, Ooyala, OoyalaExternal, OraTV, orf:burgenland, orf:fm4, orf:fm4:story, orf:iptv, orf:kaernten, orf:noe, orf:oberoesterreich, orf:oe1, orf:oe3, orf:salzburg, orf:steiermark, orf:tirol, orf:tvthek, orf:vorarlberg, orf:wien, OsnatelTV, OutsideTV, PacktPub, PacktPubCourse, pandora.tv, ParamountNetwork, parliamentlive.tv, Patreon, pbs, PearVideo, PeerTube, People, PerformGroup, periscope, periscope:user, PhilharmonieDeParis, phoenix.de, Photobucket, Picarto, PicartoVod, Piksel, Pinkbike, Pinterest, PinterestCollection, Pladform, Platzi, PlatziCourse, play.fm, player.sky.it, PlayPlusTV, PlaysTV, Playtvak, Playvid, Playwire, pluralsight, pluralsight:course, podomatic, Pokemon, PolskieRadio, PolskieRadioCategory, Popcorntimes, PopcornTV, PornCom, PornerBros, PornHd, PornHub, PornHubPagedVideoList, PornHubUser, PornHubUserVideosUpload, Pornotube, PornoVoisines, PornoXO, PornTube, PressTV, prosiebensat1, puhutv, puhutv:serie, Puls4, Pyvideo, qqmusic, qqmusic:album, qqmusic:playlist, qqmusic:singer, qqmusic:toplist, QuantumTV, Qub, Quickline, QuicklineLive, R7, R7Article, radio.de, radiobremen, radiocanada, radiocanada:audiovideo, radiofrance, RadioJavan, Rai, RaiPlay, RaiPlayLive, RaiPlayPlaylist, RayWenderlich, RayWenderlichCourse, RBMARadio, RDS, RedBull, RedBullEmbed, RedBullTV, RedBullTVRrnContent, Reddit, RedditR, RedTube, RegioTV, RENTV, RENTVArticle, Restudy, Reuters, ReverbNation, RICE, RMCDecouverte, RockstarGames, RoosterTeeth, RottenTomatoes, Roxwel, Rozhlas, RTBF, rte, rte:radio, rtl.nl, rtl2, rtl2:you, rtl2:you:series, Rtmp, RTP, RTS, rtve.es:alacarta, rtve.es:infantil, rtve.es:live, rtve.es:television, RTVNH, RTVS, RUHD, RumbleEmbed, rutube, rutube:channel, rutube:embed, rutube:movie, rutube:person, rutube:playlist, RUTV, Ruutu, Ruv, safari, safari:api, safari:course, SAKTV, SaltTV, Sapo, savefrom.net, SBS, schooltv, screen.yahoo:search, Screencast, ScreencastOMatic, ScrippsNetworks, scrippsnetworks:watch, SCTE, SCTECourse, Seeker, SenateISVP, SendtoNews, Servus, Sexu, SeznamZpravy, SeznamZpravyArticle, Shahid, ShahidShow, Shared, ShowRoomLive, Sina, sky.it, sky:news, sky:sports, sky:sports:news, skyacademy.it, SkylineWebcams, skynewsarabia:article, skynewsarabia:video, Slideshare, SlidesLive, Slutload, Snotr, Sohu, SonyLIV, soundcloud, soundcloud:playlist, soundcloud:search, soundcloud:set, soundcloud:trackstation, soundcloud:user, SoundcloudEmbed, soundgasm, soundgasm:profile, southpark.cc.com, southpark.cc.com:español, southpark.de, southpark.nl, southparkstudios.dk, SpankBang, SpankBangPlaylist, Spankwire, Spiegel, sport.francetvinfo.fr, Sport5, SportBox, SportDeutschland, spotify, spotify:show, Spreaker, SpreakerPage, SpreakerShow, SpreakerShowPage, SpringboardPlatform, Sprout, sr:mediathek, SRGSSR, SRGSSRPlay, stanfordoc, Steam, Stitcher, StitcherShow, Streamable, streamcloud.eu, StreamCZ, StreetVoice, StretchInternet, stv:player, SunPorno, sverigesradio:episode, sverigesradio:publication, SVT, SVTPage, SVTPlay, SVTSeries, SWRMediathek, Syfy, SztvHu, t-online.de, Tagesschau, tagesschau:player, Tass, TBS, TDSLifeway, Teachable, TeachableCourse, teachertube, teachertube:user:collection, TeachingChannel, Teamcoco, TeamTreeHouse, TechTalks, techtv.mit.edu, ted, Tele13, Tele5, TeleBruxelles, Telecinco, Telegraaf, TeleMB, TeleQuebec, TeleQuebecEmission, TeleQuebecLive, TeleQuebecSquat, TeleQuebecVideo, TeleTask, Telewebion, TennisTV, TenPlay, TestURL, TF1, TFO, TheIntercept, ThePlatform, ThePlatformFeed, TheScene, TheStar, TheSun, TheWeatherChannel, ThisAmericanLife, ThisAV, ThisOldHouse, TikTok, TikTokUser (CURRENTLY BROKEN), tinypic, TMZ, TMZArticle, TNAFlix, TNAFlixNetworkEmbed, toggle, ToonGoggles, tou.tv, Toypics, ToypicsUser, TrailerAddict (CURRENTLY BROKEN), Trilulilu, Trovo, TrovoVod, TruNews, TruTV, Tube8, TubiTv, Tumblr, tunein:clip, tunein:program, tunein:shortener, tunein:station, tunein:topic, TunePk, Turbo, tv.dfb.de, TV2, tv2.hu, TV2Article, TV2DK, TV2DKBornholmPlay, TV4, TV5MondePlus, tv5unis, tv5unis:video, tv8.it, TVA, TVANouvelles, TVANouvellesArticle, TVC, TVCArticle, TVer, tvigle, tvland.com, TVN24, TVNet, TVNoe, TVNow, TVNowAnnual, TVNowNew, TVNowSeason, TVNowShow, tvp, tvp:embed, tvp:series, TVPlayer, TVPlayHome, Tweakers, TwitCasting, twitch:clips, twitch:stream, twitch:vod, TwitchCollection, TwitchVideos, TwitchVideosClips, TwitchVideosCollections, twitter, twitter:amplify, twitter:broadcast, twitter:card, udemy, udemy:course, UDNEmbed, UFCArabia, UFCTV, UKTVPlay, umg:de, UnicodeBOM, Unistra, Unity, uol.com.br, uplynk, uplynk:preplay, Urort, URPlay, USANetwork, USAToday, ustream, ustream:channel, ustudio, ustudio:embed, Varzesh3, Vbox7, VeeHD, Veoh, Vesti, Vevo, VevoPlaylist, VGTV, vh1.com, vhx:embed, Viafree, vice, vice:article, vice:show, Vidbit, Viddler, Videa, video.google:search, video.sky.it, video.sky.it:live, VideoDetective, videofy.me, videomore, videomore:season, videomore:video, VideoPress, Vidio, VidLii, vidme, vidme:user, vidme:user:likes, vier, vier:videos, viewlift, viewlift:embed, Viidea, viki, viki:channel, vimeo, vimeo:album, vimeo:channel, vimeo:group, vimeo:likes, vimeo:ondemand, vimeo:review, vimeo:user, vimeo:watchlater, Vimple, Vine, vine:user, Viqeo, Viu, viu:ott, viu:playlist, Vivo, vk, vk:uservideos, vk:wallpost, vlive, vlive:channel, vlive:post, Vodlocker, VODPl, VODPlatform, VoiceRepublic, Voot, VoxMedia, VoxMediaVolume, vpro, Vrak, VRT, VrtNU, vrv, vrv:series, VShare, VTM, VTXTV, vube, VuClip, VVVVID, VVVVIDShow, VyboryMos, Vzaar, Wakanim, Walla, WalyTV, washingtonpost, washingtonpost:article, wat.tv, WatchBox, WatchIndianPorn, WDR, wdr:mobile, WDRElefant, WDRPage, Webcaster, WebcasterFeed, WebOfStories, WebOfStoriesPlaylist, Weibo, WeiboMobile, WeiqiTV, Wistia, WistiaPlaylist, wnl, WorldStarHipHop, WSJ, WSJArticle, WWE, XBef, XboxClips, XFileShare, XHamster, XHamsterEmbed, XHamsterUser, xiami:album, xiami:artist, xiami:collection, xiami:song, ximalaya, ximalaya:album, XMinus, XNXX, Xstream, XTube, XTubeUser, Xuite, XVideos, XXXYMovies, Yahoo, yahoo:gyao, yahoo:gyao:player, yahoo:japannews, YandexDisk, yandexmusic:album, yandexmusic:artist:albums, yandexmusic:artist:tracks, yandexmusic:playlist, yandexmusic:track, YandexVideo, YapFiles, YesJapan, yinyuetai:video, Ynet, YouJizz, youku, youku:show, YouNowChannel, YouNowLive, YouNowMoment, YouPorn, YourPorn, YourUpload, youtube, youtube:favorites, youtube:history, youtube:playlist, youtube:recommended, youtube:search, youtube:search:date, youtube:subscriptions, youtube:tab, youtube:truncated_id, youtube:truncated_url, youtube:watchlater, YoutubeYtBe, YoutubeYtUser, Zapiks, Zattoo, ZattooLive, ZDF, ZDFChannel, zingmp3, Zype