Package: afni-atlases Source: afni-data Version: 0.20180120-1.1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 109419 Homepage: http://afni.nimh.nih.gov Priority: extra Section: science Filename: pool/main/a/afni-data/afni-atlases_0.20180120-1.1_all.deb Size: 98215048 SHA256: b7b30ce4345671d92cb08f939b76de42f81a6839abe3d47dba1db0620fe64e0c SHA1: 792d6506cc866acfa54fc71475f823e686f169f7 MD5sum: deaddf5e6992face9b5edeb62644187c Description: standard space brain atlases for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provide AFNI's standard space brain templates in HEAD/BRIK format. Package: aghermann Version: 1.0.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1589 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libcairo2 (>= 1.2.4), libconfig++9, libfftw3-double3, libgcc1 (>= 1:4.1.1), libglib2.0-0 (>= 2.31.18), libgomp1 (>= 4.4), libgsl0ldbl (>= 1.9), libgtk-3-0 (>= 3.3.16), libitpp7, liblua5.2-0, libpango1.0-0 (>= 1.14.0), libsamplerate0 (>= 0.1.7), libstdc++6 (>= 4.6), libunique-3.0-0 (>= 2.90.1), libvte-2.90-9 (>= 1:0.27.2) Suggests: edfbrowser Homepage: http://johnhommer.com/academic/code/aghermann Priority: optional Section: science Filename: pool/main/a/aghermann/aghermann_1.0.1-1~nd13.04+1_amd64.deb Size: 709334 SHA256: 4b176bb32f194efe8a3c740aebc4aea76a0baaf4f3884ca92c34f4bb1737254d SHA1: 970761ca50de56a079b535e52bfc8fa7c95124f1 MD5sum: 7d36fe40f560d2a31e90fdaa0c8c7015 Description: Sleep-research experiment manager Aghermann is a program designed around a common workflow in sleep-research, complete with scoring facility; cairo subpixel drawing on screen or to file; conventional PSD and EEG Micrcontinuity profiles; Independent Component Analysis; artifact detection; and Process S simulation following Achermann et al, 1993. Package: biosig-tools Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 667 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libcholmod1.7.1 (>= 1:3.4.0), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), zlib1g (>= 1:1.1.4) Homepage: http://biosig.sf.net/ Priority: extra Section: science Filename: pool/main/b/biosig4c++/biosig-tools_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 282686 SHA256: f142cdd7d5601972ebd7ecbfc0171079f220354f6667a4362e064bd7abdc3ded SHA1: 7c43c7d8b12af57ad5eea540ad169820189e3be8 MD5sum: 69a5f47e32314cb42a083770ab670b80 Description: format conversion tools for biomedical data formats Based on BioSig library, this package provides command line tools, such as . - save2gdf: converter between different file formats, including but not limited to SCP-ECG(EN1064), HL7aECG (FDA-XML), GDF, EDF, BDF, CWFB. save2gdf can be also used to upload or retrieve data from a bscs server. Package: cde Version: 0.1+git9-g551e54d-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1014 Depends: neurodebian-popularity-contest, libc6 (>= 2.14) Homepage: http://www.pgbovine.net/cde.html Priority: optional Section: utils Filename: pool/main/c/cde/cde_0.1+git9-g551e54d-1~nd13.04+1_amd64.deb Size: 366580 SHA256: 49499394e2c612ede239c011d3e42d3b74e367b3b2f00d82957f224d21736f66 SHA1: 5637a0991429d1ad7f2803ab56b11a4da4192e92 MD5sum: 0f5ce083d779adc684b157bbac870506 Description: package everything required to execute a Linux command on another computer CDEpack (Code, Data, and Environment packaging) is a tool that automatically packages up everything required to execute a Linux command on another computer without any installation or configuration. A command can range from something as simple as a command-line utility to a sophisticated GUI application with 3D graphics. The only requirement is that the other computer have the same hardware architecture (e.g., x86) and major kernel version (e.g., 2.6.X) as yours. CDEpack allows you to easily run programs without the dependency hell that inevitably occurs when attempting to install software or libraries. . Typical use cases: 1. Quickly share prototype software 2. Try out software in non-native environments 3. Perform reproducible research 4. Instantly deploy applications to cluster or cloud computing 5. Submit executable bug reports 6. Package class programming assignments 7. Easily collaborate on coding projects Package: cmtk Version: 3.2.2-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 24992 Depends: neurodebian-popularity-contest, libbz2-1.0, libc6 (>= 2.14), libdcmtk2 (>= 3.6.0), libfftw3-double3, libgcc1 (>= 1:4.1.1), libgomp1 (>= 4.2.1), libmxml1, libqtcore4 (>= 4:4.6.1), libqtgui4 (>= 4:4.5.3), libsqlite3-0 (>= 3.5.9), libstdc++6 (>= 4.6), zlib1g (>= 1:1.1.4) Recommends: sri24-atlas Suggests: numdiff Homepage: http://www.nitrc.org/projects/cmtk/ Priority: extra Section: science Filename: pool/main/c/cmtk/cmtk_3.2.2-1~nd13.04+1_amd64.deb Size: 6719006 SHA256: 40a04afc4d52633c91b5204d00f117eef44d0d8176df7fb6f21c09de6e123d54 SHA1: a5efcd99ac33f682190712e9e24996aa3f8f939c MD5sum: 04d836011cb39c3f4a315dabed6610ca Description: Computational Morphometry Toolkit A software toolkit for computational morphometry of biomedical images, CMTK comprises a set of command line tools and a back-end general-purpose library for processing and I/O. . The command line tools primarily provide the following functionality: registration (affine and nonrigid; single and multi-channel; pairwise and groupwise), image correction (MR bias field estimation; interleaved image artifact correction), processing (filters; combination of segmentations via voting and STAPLE; shape-based averaging), statistics (t-tests; general linear regression). Package: cnrun Version: 1.1.14-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 323 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libgsl0ldbl (>= 1.9), libreadline6 (>= 6.0), libstdc++6 (>= 4.6), libxml2 (>= 2.6.27) Suggests: gnuplot Homepage: http://johnhommer.com/academic/code/cnrun Priority: optional Section: science Filename: pool/main/c/cnrun/cnrun_1.1.14-1~nd13.04+1_amd64.deb Size: 126540 SHA256: 328aed68527c66c624e641b48cfb0d67b9ca4e6cab75b66b9b3a5ee3ed1ca72a SHA1: 00e7f315a0b912d2c813ae93fb6f14c82be4bbff MD5sum: ce3192ad18086e7a12084e12140d1191 Description: NeuroML-capable neuronal network simulator CNrun is a neuronal network model simulator, similar in purpose to NEURON except that individual neurons are not compartmentalised. It can read NeuroML files (e.g., as generated by neuroConstruct); provides a Hodgkin-Huxley neuron (plus some varieties), a Rall and Alpha-Beta synapses, Poisson, Van der Pol, Colpitts oscillators and regular pulse generator; external inputs and logging state variables. Uses a 6-5 Runge-Kutta integration method. Basic scripting and (if run interactively) context-aware autocompletion. Package: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 14728 Depends: neurodebian-popularity-contest, debconf (>= 0.5) | debconf-2.0, libc6 (>= 2.14), libclassad3, libcomerr2 (>= 1.01), libcurl3 (>= 7.16.2), libexpat1 (>= 2.0.1), libgcc1 (>= 1:4.1.1), libglobus-common0 (>= 14), libglobus-ftp-control1 (>= 4), libglobus-gass-transfer2 (>= 7), libglobus-gram-client3 (>= 12), libglobus-gsi-credential1 (>= 5), libglobus-gsi-proxy-core0 (>= 6), libglobus-gsi-sysconfig1 (>= 5), libglobus-gss-assist3 (>= 8), libglobus-gssapi-gsi4 (>= 10), libglobus-io3 (>= 9), libglobus-rsl2 (>= 9), libglobus-xio0 (>= 3), libgsoap2, libk5crypto3 (>= 1.6.dfsg.2), libkrb5-3 (>= 1.10+dfsg~), libldap-2.4-2 (>= 2.4.7), libpcre3 (>= 8.10), libssl1.0.0 (>= 1.0.0), libstdc++6 (>= 4.6), libuuid1 (>= 2.16), libvirt0 (>= 0.5.0), python, perl, adduser, libdate-manip-perl Recommends: dmtcp Suggests: coop-computing-tools Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: science Filename: pool/main/c/condor/condor_7.8.8~dfsg.1-2~nd13.04+1_amd64.deb Size: 4915752 SHA256: 6a8220867b68acfc3afe69a925c19b8f4cb5331faaccf234177e03479b5df072 SHA1: 7f11850fe402e9ee4e25ccb147181bff695c51cf MD5sum: 74cb77b0635d6fea48aa97eaff4ae085 Description: distributed workload management system Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package can set up an appropriate initial configuration at install time for a machine intended either as a member of an existing Condor pool or as a "Personal" (single machine) Condor pool. Package: condor-dbg Source: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 35971 Depends: neurodebian-popularity-contest, condor (= 7.8.8~dfsg.1-2~nd13.04+1) Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: debug Filename: pool/main/c/condor/condor-dbg_7.8.8~dfsg.1-2~nd13.04+1_amd64.deb Size: 12415404 SHA256: 40badc4d29909feb5e06c9d0248238c35e2198eb8bfd2f41a8c4ecdd921cbebf SHA1: 6f982647fdf446eb3ec08b2249e65cdf8bcf057d MD5sum: dcba7da5e32f9087da1b5089b19cb1ac Description: distributed workload management system - debugging symbols Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package provides the debugging symbols for Condor. Package: condor-dev Source: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 2068 Depends: neurodebian-popularity-contest Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: devel Filename: pool/main/c/condor/condor-dev_7.8.8~dfsg.1-2~nd13.04+1_amd64.deb Size: 459920 SHA256: ce7d1be66b76c0ed70607f52bac298b70c1e67b9f35fbf2e8ec21236f34cf603 SHA1: 46538d3cea88fbcb3c8cc89bbc2f350eeb82c2fc MD5sum: 18683276bed478ab9b218747f74fc09f Description: distributed workload management system - development files Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package provides headers and libraries for development of Condor add-ons. Package: condor-doc Source: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 6118 Depends: neurodebian-popularity-contest Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: doc Filename: pool/main/c/condor/condor-doc_7.8.8~dfsg.1-2~nd13.04+1_all.deb Size: 1459864 SHA256: 70fd12501ed9c750b5e148e55bc2335501daaaf6b77ff80dc728277c4a68f4f6 SHA1: c659a0a5d89550d08188b5f04afba63c467db9fd MD5sum: 32fab8d8211465476741f9d83cf1ec9e Description: distributed workload management system - documentation Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package provides Condor's documentation in HTML and PDF format, as well as configuration and other examples. Package: connectome-workbench Version: 1.0-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 36349 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libftgl2 (>= 2.1.3~rc5), libgcc1 (>= 1:4.1.1), libgl1-mesa-glx | libgl1, libglu1-mesa | libglu1, libgomp1 (>= 4.4), libosmesa6 (>= 6.5.2-1) | libgl1-mesa-glide3, libqt4-network (>= 4:4.5.3), libqt4-opengl (>= 4:4.7.0~beta1), libqt4-xml (>= 4:4.5.3), libqtcore4 (>= 4:4.8.0), libqtgui4 (>= 4:4.8.0), libqtwebkit4, libstdc++6 (>= 4.6), zlib1g (>= 1:1.2.3.3) Recommends: caret Suggests: ffmpeg Homepage: http://www.nitrc.org/projects/workbench/ Priority: extra Section: science Filename: pool/main/c/connectome-workbench/connectome-workbench_1.0-1~nd13.04+1_amd64.deb Size: 23864846 SHA256: e94170cf1f9a88b7eeffaffa22bd5f22aba3e9c3923a3861f2620611bff5bdd1 SHA1: 027233a99e07091dad75cccccf4c012f9f9430ca MD5sum: 81eee7140c493aa937d57e0b5813ba66 Description: brain visualization, analysis and discovery tool Connectome Workbench is a brain visualization, analysis and discovery tool for fMRI and dMRI brain imaging data, including functional and structural connectivity data generated by the Human Connectome Project. . Package includes wb_command, a command-line program for performing a variety of analytical tasks for volume, surface, and CIFTI grayordinates data. Package: connectome-workbench-dbg Source: connectome-workbench Version: 1.0-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 106338 Depends: neurodebian-popularity-contest, connectome-workbench (= 1.0-1~nd13.04+1) Homepage: http://www.nitrc.org/projects/workbench/ Priority: extra Section: debug Filename: pool/main/c/connectome-workbench/connectome-workbench-dbg_1.0-1~nd13.04+1_amd64.deb Size: 104315976 SHA256: 691a547c4ce8f19c875a4e39e691a50f06d18cfcb25b465b89080d06a22f8111 SHA1: 14f096278287dd08d71b0b632def05477f37a776 MD5sum: 3e605486dfb4ccf6e7746932c4b18497 Description: brain visualization, analysis and discovery tool -- debug symbols Connectome Workbench is a brain visualization, analysis and discovery tool for fMRI and dMRI brain imaging data, including functional and structural connectivity data generated by the Human Connectome Project. . Package includes wb_command, a command-line program for performing a variety of analytical tasks for volume, surface, and CIFTI grayordinates data. . This package contains debug symbols for the binaries. Package: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 224 Depends: neurodebian-popularity-contest, python3-datalad (= 0.17.5-1~nd+1), python3-argcomplete (>= 1.12.3), python3:any Suggests: datalad-container, datalad-crawler, datalad-neuroimaging Homepage: https://datalad.org Priority: optional Section: science Filename: pool/main/d/datalad/datalad_0.17.5-1~nd+1_all.deb Size: 187092 SHA256: dcfab5ab31ab85c685b4439648c3095efb236b34c92eb2f870fc1376dd0dbab1 SHA1: e8a088bc96e73f10444588eede93689410943c07 MD5sum: a4020bc221d05979fe1738d432660717 Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) Package: debruijn Version: 1.6-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 147 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libfftw3-double3, libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1) Homepage: http://www.cfn.upenn.edu/aguirre/wiki/public:de_bruijn_software Priority: extra Section: science Filename: pool/main/d/debruijn/debruijn_1.6-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 48128 SHA256: c3ab676f3948c4703b2f38428b1c09dc759c9b09f3cf9c7c020d04f2e442bf96 SHA1: 932ba105ef968b89ce83937b13d42f3cd5ddb294 MD5sum: d46f370e55a6f38d758286b32a904888 Description: De Bruijn cycle generator Stimulus counter-balance is important for many experimental designs. This command-line software creates De Bruijn cycles, which are pseudo-random sequences with arbitrary levels of counterbalance. "Path-guided" de Bruijn cycles may also be created. These sequences encode a hypothesized neural modulation at specified temporal frequencies, and have enhanced detection power for BOLD fMRI experiments. Package: dh-systemd Source: init-system-helpers Version: 1.18~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 28 Depends: neurodebian-popularity-contest, perl, debhelper Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/dh-systemd_1.18~nd13.04+1_all.deb Size: 14646 SHA256: 7fc34fd43ae4d4dd192fe8cb680c62da436441c1288b9067fbbce237dbf32719 SHA1: c1901cac36deb3c11c83b058439c6c20756cd0aa MD5sum: 5137130f51fc0e91c2a515d1f6276bf8 Description: debhelper add-on to handle systemd unit files dh-systemd provides a debhelper sequence addon named 'systemd' and the dh_systemd_enable/dh_systemd_start commands. . The dh_systemd_enable command adds the appropriate code to the postinst, prerm and postrm maint scripts to properly enable/disable systemd service files. The dh_systemd_start command deals with start/stop/restart on upgrades for systemd-only service files. Package: dmtcp Version: 2.3.1-3~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2496 Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0) Homepage: http://dmtcp.sourceforge.net Priority: optional Section: utils Filename: pool/main/d/dmtcp/dmtcp_2.3.1-3~nd13.04+1_amd64.deb Size: 1068558 SHA256: 9cb7df00abd15bed0bfea05a58a4f61a008ab1dbf18a25c073a145af7d7f84ad SHA1: adf3c736e8487d2fba8dbf0c6b90a6f58fbebb83 MD5sum: 88fddb850c5f2cd88d4b1a9fc588cc90 Description: Checkpoint/Restart functionality for Linux processes DMTCP (Distributed MultiThreaded Checkpointing) is a tool to transparently checkpointing the state of an arbitrary group of programs including multi-threaded and distributed computations. It operates directly on the user binary executable, with no Linux kernel modules or other kernel mods. . Among the applications supported by DMTCP are Open MPI, MATLAB, Python, Perl, and many programming languages and shell scripting languages. DMTCP also supports GNU screen sessions, including vim/cscope and emacs. With the use of TightVNC, it can also checkpoint and restart X-Window applications, as long as they do not use extensions (e.g.: no OpenGL, no video). . This package contains DMTCP binaries. Package: dmtcp-dbg Source: dmtcp Version: 2.3.1-3~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 24770 Depends: neurodebian-popularity-contest, dmtcp Homepage: http://dmtcp.sourceforge.net Priority: extra Section: debug Filename: pool/main/d/dmtcp/dmtcp-dbg_2.3.1-3~nd13.04+1_amd64.deb Size: 6954558 SHA256: 7bbd76373a97b15fe40694cebcd0245b2217aacbd5ee2362954a0f76ade77151 SHA1: 1df7a2c38ae14159ca2f18d0afa052a0279b4a8b MD5sum: 47eaa6c932e3ea814f27129cf6afbaf9 Description: Debug package for dmtcp DMTCP (Distributed MultiThreaded Checkpointing) is a tool to transparently checkpointing the state of an arbitrary group of programs including multi-threaded and distributed computations. It operates directly on the user binary executable, with no Linux kernel modules or other kernel mods. . Among the applications supported by DMTCP are Open MPI, MATLAB, Python, Perl, and many programming languages and shell scripting languages. DMTCP also supports GNU screen sessions, including vim/cscope and emacs. With the use of TightVNC, it can also checkpoint and restart X-Window applications, as long as they do not use extensions (e.g.: no OpenGL, no video). . This package contains debugging symbols for DMTCP. Package: eeglab11-sampledata Source: eeglab11 Version: 11.0.0.0~b~dfsg.1-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8109 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/e/eeglab11/eeglab11-sampledata_11.0.0.0~b~dfsg.1-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 7224822 SHA256: e03522059ac09830cf48fd4f41780c0e6fcc7c4d1f3c331f213dbc6743c49565 SHA1: d9675743da0b53adc7682ebacfc6a4922f7a0880 MD5sum: 8a6520b56c5bf5302d61f9eb27b6a847 Description: sample EEG data for EEGLAB tutorials EEGLAB is sofwware for processing continuous or event-related EEG or other physiological data. . This package provide some tutorial data files shipped with the EEGLAB distribution. Package: eegview Version: 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 20 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libeegdev0, libmcpanel0 (>= 0.0), libxdffileio0 (>= 0.0) Homepage: http://cnbi.epfl.ch/software/eegview.html Priority: extra Section: science Filename: pool/main/e/eegview/eegview_0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 11078 SHA256: 8b63c41e24d22ce350e373adb5ba1e34df8c174f3b99d5caf054f0b0514bf353 SHA1: d76df4adc9fcde5cd2fd073563e2cb804b39d606 MD5sum: a08d684fb0a68a6df02c7afdc578c137 Description: Software to display EEG data in realtime This software allows one to display EEG signal in realtime as well as record them. It is the minimal recording panel needed to do simple experiment. Package: environment-modules Source: modules Version: 3.2.10-8~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 174 Depends: neurodebian-popularity-contest, debhelper (>= 9), tcl8.6 (>= 8.6.0), libc6 (>= 2.14) Homepage: http://modules.sourceforge.net/ Priority: optional Section: devel Filename: pool/main/m/modules/environment-modules_3.2.10-8~nd13.04+1_amd64.deb Size: 88276 SHA256: 3686b914c9ba3934055b85a2da1f7cae7e82b399250a16feeeab8d64261210bd SHA1: 67a09feac19a23ffd091dd6f216468bde2916cbd MD5sum: 61ab88294bb2953c4f66d7b987dfce2f Description: Modular system for handling environment variables The Modules package provides for the dynamic modification of a user's environment via modulefiles. Each modulefile contains the information needed to configure the shell for an application. Once the Modules package is initialized, the environment can be modified dynamically on a per-module basis using the module command which interprets modulefiles. Typically modulefiles instruct the module command to alter or set shell environment variables such as PATH, MANPATH, etc. modulefiles may be shared by many users on a system and users may have their own collection to supplement or replace the shared modulefiles. The modules environment is common on SGI/Crays and many workstation farms. Package: fail2ban Version: 0.8.13-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 563 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), lsb-base (>= 2.0-7) Recommends: iptables, whois, python-pyinotify Suggests: python-gamin, mailx, system-log-daemon Homepage: http://www.fail2ban.org Priority: optional Section: net Filename: pool/main/f/fail2ban/fail2ban_0.8.13-1~nd13.04+1_all.deb Size: 185306 SHA256: 294b6f3edba827bc5a0cc861678855645e237c3fea6d1bbc57171f52f610d791 SHA1: 9bc959bc346d2f3d03dc349363a7ec7b0504b9d7 MD5sum: 58e2d3ff48f89916ee96f129597b3975 Description: ban hosts that cause multiple authentication errors Fail2ban monitors log files (e.g. /var/log/auth.log, /var/log/apache/access.log) and temporarily or persistently bans failure-prone addresses by updating existing firewall rules. Fail2ban allows easy specification of different actions to be taken such as to ban an IP using iptables or hostsdeny rules, or simply to send a notification email. . By default, it comes with filter expressions for various services (sshd, apache, qmail, proftpd, sasl etc.) but configuration can be easily extended for monitoring any other text file. All filters and actions are given in the config files, thus fail2ban can be adopted to be used with a variety of files and firewalls. Package: fis-gtm Version: 6.0-003-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 36 Depends: neurodebian-popularity-contest, fis-gtm-6.0-003 Provides: mumps Homepage: http://sourceforge.net/projects/fis-gtm Priority: optional Section: database Filename: pool/main/f/fis-gtm/fis-gtm_6.0-003-2~nd13.04+1_all.deb Size: 15118 SHA256: 62a3d1064045f0c9adc75259bdd44bece502402aa6af5a7a910453caea3a8d7d SHA1: 407dbe9fde129c6716b52b6b44a54c23d118cb80 MD5sum: 12b9bdc8bd351655f2d686c5efe6c92c Description: metapackage for the latest version of FIS-GT.M database GT.M is a database engine with scalability proven in large real-time transaction processing systems that have thousands of concurrent users, individual database file sizes to the Terabyte range (with virtually unlimited aggregate database sizes). Yet the light footprint of GT.M allows it to also scale down for use in small applications and software appliances (virtual machines). . The GT.M data model is hierarchical associative memory (i.e., multi-dimensional array) that imposes no restrictions on the data types of the indexes or content - the application logic can impose any schema, dictionary or data organization suited to its problem domain. (Database engines that do not impose schemas, but which allow layered application software to impose and use whatever schema that is appropriate to the application are popularly referred to as "document oriented", "schemaless" or "schema-free" databases.) . GT.M's compiler for the standard M (also known as MUMPS) scripting language implements full support for ACID (Atomic, Consistent, Isolated, Durable) transactions, using optimistic concurrency control and software transactional memory (STM) that resolves the common mismatch between databases and programming languages. Its unique ability to create and deploy logical multi-site configurations of applications provides unrivaled continuity of business in the face of not just unplanned events, but also planned events, including planned events that include changes to application logic and schema. . This metapackage always depends from the default fis-gtm version. Package: fis-gtm-6.0-003 Source: fis-gtm Version: 6.0-003-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 24364 Depends: neurodebian-popularity-contest, libc6 (>= 2.17), libelf1 (>= 0.131), libgcrypt11 (>= 1.4.5), libgpgme11 (>= 1.2.0), libtinfo5, libicu-dev Provides: gtm, mumps Homepage: http://sourceforge.net/projects/fis-gtm Priority: optional Section: database Filename: pool/main/f/fis-gtm/fis-gtm-6.0-003_6.0-003-2~nd13.04+1_amd64.deb Size: 9854030 SHA256: 2baa9416384227ba5f5d48eb55685075f04d50b8bb356a12d2158dc3f9de7941 SHA1: f7ebfee000d6778c3aa01f6616e0ba9dfcf2be14 MD5sum: 2894dcdd3ea3d74205e404d16346b513 Description: package for FIS-GT.M database GT.M is a database engine with scalability proven in large real-time transaction processing systems that have thousands of concurrent users, individual database file sizes to the Terabyte range (with virtually unlimited aggregate database sizes). Yet the light footprint of GT.M allows it to also scale down for use in small applications and software appliances (virtual machines). . The GT.M data model is hierarchical associative memory (i.e., multi-dimensional array) that imposes no restrictions on the data types of the indexes or content - the application logic can impose any schema, dictionary or data organization suited to its problem domain. (Database engines that do not impose schemas, but which allow layered application software to impose and use whatever schema that is appropriate to the application are popularly referred to as "document oriented", "schemaless" or "schema-free" databases.) . GT.M's compiler for the standard M (also known as MUMPS) scripting language implements full support for ACID (Atomic, Consistent, Isolated, Durable) transactions, using optimistic concurrency control and software transactional memory (STM) that resolves the common mismatch between databases and programming languages. Its unique ability to create and deploy logical multi-site configurations of applications provides unrivaled continuity of business in the face of not just unplanned events, but also planned events, including planned events that include changes to application logic and schema. Package: fslview Version: 4.0.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 6520 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libgcc1 (>= 1:4.1.1), libnewmat10ldbl, libnifti2, libqt4-qt3support (>= 4:4.5.3), libqt4-xml (>= 4:4.5.3), libqtcore4 (>= 4:4.7.0~beta1), libqtgui4 (>= 4:4.7.0~beta1), libqwt5-qt4, libstdc++6 (>= 4.6), libvtk5.8, libvtk5.8-qt4 Recommends: fslview-doc, qt-assistant-compat Suggests: fsl-atlases Conflicts: fsl-fslview Replaces: fsl-fslview Homepage: http://www.fmrib.ox.ac.uk/fsl/fslview Priority: optional Section: science Filename: pool/main/f/fslview/fslview_4.0.1-2~nd13.04+1_amd64.deb Size: 2331890 SHA256: d2743380224c0e5c1aa339cce4a3b3107aaf37b00fc87e813a712bbfe5c4a076 SHA1: 52eade42ef9dd29199a5bfc8469f9c2713ac596f MD5sum: 1e0fbb9e17143418502ffce7de2489bf Description: viewer for (f)MRI and DTI data This package provides a viewer for 3d and 4d MRI data as well as DTI images. FSLView is able to display ANALYZE and NIFTI files. The viewer supports multiple 2d viewing modes (orthogonal, lightbox or single slices), but also 3d volume rendering. Additionally FSLView is able to visualize timeseries and can overlay metrical and stereotaxic atlas data. . FSLView is part of FSL. Package: fslview-doc Source: fslview Version: 4.0.1-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2874 Depends: neurodebian-popularity-contest Homepage: http://www.fmrib.ox.ac.uk/fsl/fslview Priority: optional Section: doc Filename: pool/main/f/fslview/fslview-doc_4.0.1-2~nd13.04+1_all.deb Size: 2346538 SHA256: 21191091e9505223e32987c04eb1acbe3829ae341eef5525489f97a1a2d457bf SHA1: 33c8b353b6b9e7b5824704f2f58440ec2d4ad6f0 MD5sum: 66d92ab90f1579986c945c1cf4e2f90f Description: Documentation for FSLView This package provides the online documentation for FSLView. . FSLView is part of FSL. Package: git-annex-remote-rclone Version: 0.5-1~ndall+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23 Depends: neurodebian-popularity-contest, git-annex | git-annex-standalone, rclone Homepage: https://github.com/DanielDent/git-annex-remote-rclone Priority: optional Section: utils Filename: pool/main/g/git-annex-remote-rclone/git-annex-remote-rclone_0.5-1~ndall+1_all.deb Size: 7842 SHA256: 0b1d65c740ce1073ecdae6db121d304fe02c4bb95df552326894118a65b38319 SHA1: 34a2323c4387e61c4a69617150c463f9a7b772c5 MD5sum: 00c5a0407a998eba72d4f5eb0ad71189 Description: rclone-based git annex special remote This is a wrapper around rclone to make any destination supported by rclone usable with git-annex. . Cloud storage providers supported by rclone currently include: * Google Drive * Amazon S3 * Openstack Swift / Rackspace cloud files / Memset Memstore * Dropbox * Google Cloud Storage * Microsoft One Drive * Hubic * Backblaze B2 * Yandex Disk . Note: although Amazon Cloud Drive support is implemented, it is broken ATM see https://github.com/DanielDent/git-annex-remote-rclone/issues/22 . Package: git-annex-standalone Source: git-annex Version: 10.20241031-1~ndall+1 Architecture: amd64 Maintainer: Richard Hartmann Installed-Size: 166312 Depends: git, netbase, openssh-client Recommends: lsof, gnupg, bind9-host, yt-dlp, git-remote-gcrypt (>= 0.20130908-6), nocache, aria2 Suggests: xdot, bup, adb, tor, magic-wormhole, tahoe-lafs, libnss-mdns, uftp Conflicts: git-annex Breaks: datalad (<= 0.12.3~) Provides: git-annex Homepage: http://git-annex.branchable.com/ Priority: optional Section: utils Filename: pool/main/g/git-annex/git-annex-standalone_10.20241031-1~ndall+1_amd64.deb Size: 53000596 SHA256: 8080805f2216a629460f3b65242f5562fd0f1ac34403ca0713bb0a1e132ea172 SHA1: 01eba33bc328a2698a427d7006259343f31b4a5a MD5sum: b572f29657b3bba8053a3ec047ec2ed5 Description: manage files with git, without checking their contents into git -- standalone build git-annex allows managing large files with git, without storing the file contents in git. It can sync, backup, and archive your data, offline and online. Checksums and encryption keep your data safe and secure. Bring the power and distributed nature of git to bear on your large files with git-annex. . It can store large files in many places, from local hard drives, to a large number of cloud storage services, including S3, WebDAV, and rsync, with dozens of cloud storage providers usable via plugins. Files can be stored encrypted with gpg, so that the cloud storage provider cannot see your data. git-annex keeps track of where each file is stored, so it knows how many copies are available, and has many facilities to ensure your data is preserved. . git-annex can also be used to keep a folder in sync between computers, noticing when files are changed, and automatically committing them to git and transferring them to other computers. The git-annex webapp makes it easy to set up and use git-annex this way. . This package provides a standalone bundle build of git-annex, which should be installable on any more or less recent Debian or Ubuntu release. Package: glew-utils Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 409 Depends: neurodebian-popularity-contest, libglew1.9 (= 1.9.0-3~bnd1~nd13.04+1), libc6 (>= 2.4), libgl1-mesa-glx | libgl1, libx11-6 Replaces: libglew1.6 (<< 1.7) Homepage: http://glew.sourceforge.net Priority: optional Section: utils Filename: pool/main/g/glew/glew-utils_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 126200 SHA256: 559797dca4e524e49c9fd4dcca57b7aa5302aeec863a28692e6687ddff7d460a SHA1: 9d0948864fb89a075fa8bc1c8fa33dc23259172a MD5sum: f98466ff419625bca964ac0c287be390 Description: OpenGL Extension Wrangler - utilities For more information about GLEW please refer to the description of the libglew-dev package. . This package contains the utilities which can be used to query the supported OpenGL extensions. Package: gmsl Version: 1.1.5-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 78 Depends: neurodebian-popularity-contest, make Homepage: http://gmsl.sourceforge.net/ Priority: optional Section: devel Filename: pool/main/g/gmsl/gmsl_1.1.5-1~nd13.04+1_all.deb Size: 16560 SHA256: 453f04ef8d618aaab33916a7b225e764d671e59df9c9da3145fde6e50af1a90f SHA1: af7f5500dc2b910c0c300a4ff839fe573686e345 MD5sum: 3aed20b76cee6ebb63367d39ab517e30 Description: extra functions to extend functionality of GNU Makefiles The GNU Make Standard Library (GMSL) is a collection of functions implemented using native GNU Make functionality that provide list and string manipulation, integer arithmetic, associative arrays, stacks, and debugging facilities. . Note that despite the name of this project, this library is NOT standard and is NOT written or distributed by the GNU project. Package: golang-github-ncw-rclone-dev Source: rclone Version: 1.41-1~ndall0 Architecture: all Maintainer: Debian Go Packaging Team Installed-Size: 2492 Depends: golang-bazil-fuse-dev, golang-github-aws-aws-sdk-go-dev, golang-github-mreiferson-go-httpclient-dev, golang-github-ncw-go-acd-dev, golang-github-ncw-swift-dev, golang-github-pkg-errors-dev, golang-github-pkg-sftp-dev, golang-github-rfjakob-eme-dev, golang-github-skratchdot-open-golang-dev, golang-github-spf13-cobra-dev, golang-github-spf13-pflag-dev, golang-github-stacktic-dropbox-dev, golang-github-stretchr-testify-dev, golang-github-tsenart-tb-dev, golang-github-unknwon-goconfig-dev, golang-github-vividcortex-ewma-dev, golang-golang-x-crypto-dev, golang-golang-x-net-dev, golang-golang-x-oauth2-google-dev, golang-golang-x-sys-dev, golang-golang-x-text-dev, golang-google-api-dev Homepage: https://github.com/ncw/rclone Priority: optional Section: devel Filename: pool/main/r/rclone/golang-github-ncw-rclone-dev_1.41-1~ndall0_all.deb Size: 399416 SHA256: 528b53f3312375d31d5cebb95472a57272cf242e14a92cfdf99c45be2ff5511d SHA1: 75f8871fd668e815023267a857b37ad60b9d1c2f MD5sum: a87865eafe10185420838e2e4ffd7b55 Description: go source code of rclone Rclone is a program to sync files and directories between the local file system and a variety of commercial cloud storage providers. . This package contains rclone's source code. Package: guacamole Source: guacamole-client Version: 0.8.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 475 Depends: neurodebian-popularity-contest, guacd Recommends: libguac-client-vnc0 Suggests: tomcat6 | jetty Homepage: http://guac-dev.org/ Priority: extra Section: net Filename: pool/main/g/guacamole-client/guacamole_0.8.3-1~nd13.04+1_all.deb Size: 428594 SHA256: d55f6232980dc1ef9045b48139a91d4dba50bbf0ccd4f1b9985e49b867d8e1d7 SHA1: 190bdcbe59f8d3376a740ea165eaf0d2e2a6a89f MD5sum: 6d1a33f6ffebe3d47914824494caee9c Description: HTML5 web application for accessing remote desktops Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. Package: guacamole-tomcat Source: guacamole-client Version: 0.8.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11 Depends: neurodebian-popularity-contest, debconf, guacamole, tomcat6, libguac-client-vnc0, debconf (>= 0.5) | debconf-2.0 Homepage: http://guac-dev.org/ Priority: extra Section: net Filename: pool/main/g/guacamole-client/guacamole-tomcat_0.8.3-1~nd13.04+1_all.deb Size: 6954 SHA256: 86720dba22910a24bf42d89d963cc85eebdb3473d0b2cd3d024e303fe3c08d58 SHA1: dadcc37c8a43d8983e56f5b9c8b7c034e36907c4 MD5sum: 65573fafba4caf4845f917da4c2539d0 Description: Tomcat-based Guacamole install with VNC support Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. . This metapackage depends on Tomcat, Guacamole, and the VNC support plugin for guacamole. Guacamole is automatically installed and configured under Tomcat. Package: guacd Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 33 Depends: neurodebian-popularity-contest, lsb-base (>= 3.0-6), libc6 (>= 2.15), libguac5, libssl1.0.0 (>= 1.0.0) Homepage: http://guac-dev.org/ Priority: extra Section: net Filename: pool/main/g/guacamole-server/guacd_0.8.3-1~nd13.04+1_amd64.deb Size: 15498 SHA256: e4e7391d2bc35a70687c27b5b4d421d0d1334649e1d1748994e766140b958c81 SHA1: 196b2ed6913f38c48f581d457aefcba41cf4eb3c MD5sum: f2a1becf2d63bb95d67e9b7e08c26337 Description: Guacamole proxy daemon The Guacamole proxy daemon, guacd, translates between remote desktop protocols (like VNC) and the Guacamole protocol using protocol plugins. Once a user is authenticated with the Guacamole web application, a tunnel is established through the web application to guacd, allowing the JavaScript client to communicate to an arbitrary remote desktop server through guacd. Package: impressive Version: 0.10.5-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 331 Depends: neurodebian-popularity-contest, python-opengl, python-pygame, python-imaging, poppler-utils | xpdf-utils (>= 3.02-2) Recommends: pdftk, perl Suggests: ghostscript, latex-beamer Conflicts: keyjnote (<< 0.10.2r-0) Replaces: keyjnote (<< 0.10.2r-0) Provides: keyjnote Homepage: http://impressive.sourceforge.net/ Priority: optional Section: x11 Filename: pool/main/i/impressive/impressive_0.10.5-1~nd13.04+1_all.deb Size: 163108 SHA256: 2a4e67ce0cf84aeac26c708e6484e9e31a959200add9ba1eb1a96769898204e5 SHA1: a7f675b792fd558ced0c9b76a81b1e8cb3598c02 MD5sum: d095bba9049d200de56b51cc4e2b1962 Description: PDF presentation tool with eye candies Impressive is a program that displays presentation slides using OpenGL. Smooth alpha-blended slide transitions are provided for the sake of eye candy, but in addition to this, Impressive offers some unique tools that are really useful for presentations. Some of them are: * Overview screen * Highlight boxes * Spotlight effect * Presentation scripting and customization Package: incf-nidash-oneclick-clients Source: incf-nidash-oneclick Version: 2.0-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 28 Depends: neurodebian-popularity-contest, python (>= 2.5.0), python-dicom, dcmtk, python-httplib2 Homepage: http://xnat.incf.org/ Priority: extra Section: science Filename: pool/main/i/incf-nidash-oneclick/incf-nidash-oneclick-clients_2.0-1~nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 9762 SHA256: 1b70856f5e29f4ff05b8faf310211265c11d0e9b6b78f8bd46101218ed941444 SHA1: 727d17fe0fae14cde238acfc92e4c478e60c84af MD5sum: 60d09f476bd15e66eb89d054f2be4951 Description: utility for pushing DICOM data to the INCF datasharing server A command line utility for anonymizing and sending DICOM data to the XNAT image database at the International Neuroinformatics Coordinating Facility (INCF). This tool is maintained by the INCF NeuroImaging DataSharing (NIDASH) task force. Package: init-system-helpers Version: 1.18~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 29 Depends: neurodebian-popularity-contest, perl Breaks: systemd (<< 44-12) Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/init-system-helpers_1.18~nd13.04+1_all.deb Size: 14338 SHA256: 2834618c3ef83955eb6bb220a65101ae33afa1f33c98cecea4db07aef364addc SHA1: 36c58ce17ed94979417519131ffbccb0457baf82 MD5sum: b7a68e5912a00453b475029931a6dbc8 Description: helper tools for all init systems This package contains helper tools that are necessary for switching between the various init systems that Debian contains (e.g. sysvinit, upstart, systemd). An example is deb-systemd-helper, a script that enables systemd unit files without depending on a running systemd. . While this package is maintained by pkg-systemd-maintainers, it is NOT specific to systemd at all. Maintainers of other init systems are welcome to include their helpers in this package. Package: insighttoolkit4-examples Source: insighttoolkit4 Version: 4.2.1-2~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2677 Depends: neurodebian-popularity-contest Suggests: libinsighttoolkit4-dev Conflicts: insighttoolkit-examples Replaces: insighttoolkit-examples Homepage: http://www.itk.org/ Priority: optional Section: devel Filename: pool/main/i/insighttoolkit4/insighttoolkit4-examples_4.2.1-2~nd12.10+1+nd13.04+1_all.deb Size: 2408122 SHA256: 65e6c7472a8a92b3ce0c45d17ffb3483e73a2dac7e24c4ba5175cbf31ca7ea99 SHA1: f8cb4f79f753bfd22d7a9a07470b3c8814a656dd MD5sum: 074628f846a92252222964aefd06d892 Description: Image processing toolkit for registration and segmentation - examples ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both. . This package contains the source for example programs. Package: ipython01x Version: 0.13.2-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, python-argparse, python-configobj, python-decorator, python-pexpect, python-simplegeneric, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-tornado (>= 2.1.0~), python-pygments, python-qt4, python-zmq, python-matplotlib Suggests: ipython01x-doc, python-gobject, python-gtk2, python-numpy, python-profiler Conflicts: ipython-common, python2.3-ipython, python2.4-ipython Replaces: ipython-common, python2.3-ipython, python2.4-ipython Homepage: http://ipython.org/ Priority: optional Section: python Filename: pool/main/i/ipython01x/ipython01x_0.13.2-1~nd12.10+1+nd13.04+1_all.deb Size: 1286080 SHA256: b735f17a5d75039971d01bafcae7e4eb301a795277414ecebd0064d375dad79c SHA1: a5085547449b24edb309ce17e432dde037a2d232 MD5sum: 0789a3e20beda824754862ced7bcdf5e Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This is a non-official, custom build of IPython post 0.11 with notebooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-doc Source: ipython01x Version: 0.13.2-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16686 Depends: neurodebian-popularity-contest, libjs-jquery, ipython01x Homepage: http://ipython.org/ Priority: optional Section: doc Filename: pool/main/i/ipython01x/ipython01x-doc_0.13.2-1~nd12.10+1+nd13.04+1_all.deb Size: 7246220 SHA256: f98bd7d37f0204febffa5709f09eb5124cc1f376e53aa7d79d9538ad05cec0f7 SHA1: aa53cd815c0dc66eb3991d7ce8c5fd84b9b4fff9 MD5sum: 811804ffc2f242722732f1bfd66a90bf Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This package contains the documentation. . This is a non-official, custom build of IPython post 0.11 with workbooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-notebook Source: ipython01x Version: 0.13.2-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-notebook_0.13.2-1~nd12.10+1+nd13.04+1_all.deb Size: 910 SHA256: e712c2d41ec3b89d4633e58ccdc1f15893b9ac1296d4b9aae04e193ba2aae489 SHA1: 2afc184179ee99033f71f6b7f4cc6ac7e8deff23 MD5sum: 8a3db4e3c7b89648db43bb4aa8dc9b3d Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships notebook functionality inside. It is made so to stay in line to modularization of official ipython package in Debian. There is no real good reason to install this package. Package: ipython01x-parallel Source: ipython01x Version: 0.13.2-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: oldlibs Filename: pool/main/i/ipython01x/ipython01x-parallel_0.13.2-1~nd12.10+1+nd13.04+1_all.deb Size: 834 SHA256: 8dae62722abf91c76d20ca6d926382fa4197efa7d815c1973ab67ade497cd432 SHA1: b39f45f0df6f3fff98b23c54fb2cbadc6db01b1f MD5sum: aca06ab4c7848644ab4e9807593aa026 Description: enhanced interactive Python shell This is a transitional package and can be safely removed after the installation is complete. Package: ipython01x-qtconsole Source: ipython01x Version: 0.13.2-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-qtconsole_0.13.2-1~nd12.10+1+nd13.04+1_all.deb Size: 920 SHA256: 9438c824e04211686d5b9bb4c9a3a5eeedaa619255054650c85642c7e7a97395 SHA1: a1e7af1ada5039a1022157445773c5cf9c931597 MD5sum: af5c4bc8bc33c1c950d56f879b3d1e90 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships qt console functionality inside. It is made so to stay in line to modularization of the official ipython package in Debian. There is no real good reason to install this package. Package: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11748 Depends: neurodebian-popularity-contest, python-argparse, python-configobj, python-decorator, python-pexpect, python-simplegeneric, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-tornado (>= 2.1.0~), python-pygments, python-qt4, python-zmq, python-matplotlib Suggests: ipython1x-doc, python-gobject, python-gtk2, python-numpy, python-profiler Conflicts: ipython-common, python2.3-ipython, python2.4-ipython Replaces: ipython-common, python2.3-ipython, python2.4-ipython Homepage: http://ipython.org/ Priority: optional Section: python Filename: pool/main/i/ipython1x/ipython1x_1.1.0+git7-gf5891e9-1~nd13.04+1_all.deb Size: 4486534 SHA256: 94324cd485722db64cddadc7bfd1ebf13e71ff6e45c532a24dfd4952f380a287 SHA1: f6f1a41353f31ba8f0886ca23e778e989db1aec9 MD5sum: 9362cc9f7293e4a0fb8597dc71456e6f Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This is a non-official, custom build of IPython post 0.11 with notebooks support. It provides IPython1X module thus not conflicting with system-wide installed IPython Package: ipython1x-doc Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10403 Depends: neurodebian-popularity-contest, libjs-jquery, ipython1x Homepage: http://ipython.org/ Priority: optional Section: doc Filename: pool/main/i/ipython1x/ipython1x-doc_1.1.0+git7-gf5891e9-1~nd13.04+1_all.deb Size: 4191858 SHA256: fbeb5290528cfca96b94b65cbfa132d97608f6f5a651294aed932d7423b27bf3 SHA1: d6f03dbf53b09e44d6b43a614646a182e75fc7c2 MD5sum: 9b59122dee64e866196af3d1690393ae Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This package contains the documentation. . This is a non-official, custom build of IPython post 0.11 with workbooks support. It provides IPython1X module thus not conflicting with system-wide installed IPython Package: ipython1x-notebook Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython1x/ipython1x-notebook_1.1.0+git7-gf5891e9-1~nd13.04+1_all.deb Size: 914 SHA256: ab5fbda2005a1d46b4250a354bc3448b549f11c15b8b1676d224361f108f7ba7 SHA1: 7242d729a32fe408f059430a5968889d0ee717f6 MD5sum: 05a7f10ee24405419cf88a47f39ddd71 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython1x which ships notebook functionality inside. It is made so to stay in line to modularization of official ipython package in Debian. There is no real good reason to install this package. Package: ipython1x-parallel Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: oldlibs Filename: pool/main/i/ipython1x/ipython1x-parallel_1.1.0+git7-gf5891e9-1~nd13.04+1_all.deb Size: 838 SHA256: 43315410a21249c1c7d2d5a4ebdba410e73469d8af202da572e571c6159adc29 SHA1: 723104e9bf1bde1e5cea3eef9e7e34a0c5a10c7e MD5sum: 3a7f4a7e5c24c95d2e5c3f08a5815d3d Description: enhanced interactive Python shell This is a transitional package and can be safely removed after the installation is complete. Package: ipython1x-qtconsole Source: ipython1x Version: 1.1.0+git7-gf5891e9-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1 Depends: neurodebian-popularity-contest, ipython1x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython1x/ipython1x-qtconsole_1.1.0+git7-gf5891e9-1~nd13.04+1_all.deb Size: 926 SHA256: a0c02b115f2b0311d514a7c1752b7d93847cc8d1a0947ae9e730cf7245590b06 SHA1: d8425631e03d417deb9841e72d2cddb0f89ea711 MD5sum: a4d2ae8a03caea83f7430a598f7b0d4b Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython1x which ships qt console functionality inside. It is made so to stay in line to modularization of the official ipython package in Debian. There is no real good reason to install this package. Package: libbiosig-dev Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1712 Depends: neurodebian-popularity-contest, libbiosig1 (= 1.4.1-1~nd12.10+1+nd13.04+1) Homepage: http://biosig.sf.net/ Priority: extra Section: libdevel Filename: pool/main/b/biosig4c++/libbiosig-dev_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 426496 SHA256: 9f4778c20441165a464c88bbe8e8163311791b2c9fd95a44af9c5c4aa1646b37 SHA1: 2072f1cdfcda00abe9380a5416525f368ededfb4 MD5sum: 5a88706d35ae32b0b6a3c1dc9ba6ddf8 Description: I/O library for biomedical data - development files BioSig is a library for accessing files in several biomedical data formats (including EDF, BDF, GDF, BrainVision, BCI2000, CFWB, HL7aECG, SCP_ECG (EN1064), MFER, ACQ, CNT(Neuroscan), DEMG, EGI, EEG1100, FAMOS, SigmaPLpro, TMS32). The complete list of supported file formats is available at http://pub.ist.ac.at/~schloegl/biosig/TESTED . . This package provides header files and static library. Package: libbiosig1 Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 909 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1) Homepage: http://biosig.sf.net/ Priority: extra Section: libs Filename: pool/main/b/biosig4c++/libbiosig1_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 336076 SHA256: c6f580cf42184ee10bb9cabe5172eecb781ce2e96490e25f20db8b98378d9723 SHA1: a44ce17142e9d0ed071157c83c9b17fa77c3549d MD5sum: 4b62d4b9fcc32a74370f3c9df3718393 Description: I/O library for biomedical data - dynamic library BioSig is a library for accessing files in several biomedical data formats (including EDF, BDF, GDF, BrainVision, BCI2000, CFWB, HL7aECG, SCP_ECG (EN1064), MFER, ACQ, CNT(Neuroscan), DEMG, EGI, EEG1100, FAMOS, SigmaPLpro, TMS32). The complete list of supported file formats is available at http://pub.ist.ac.at/~schloegl/biosig/TESTED . . This package provides dynamic library. Package: libbiosig1-dbg Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 377 Depends: neurodebian-popularity-contest, libbiosig1 (= 1.4.1-1~nd12.10+1+nd13.04+1) Homepage: http://biosig.sf.net/ Priority: extra Section: debug Filename: pool/main/b/biosig4c++/libbiosig1-dbg_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 118464 SHA256: c3536259f92d439fe4076f1a67ff00f91ab44b8e2887e6ce76fbcfc402ca89bc SHA1: 823284ab231c23ba0408027323e7b31778283775 MD5sum: b179b01b97c21e41e0c586d6681ca240 Description: I/O library for biomedical data - debug symbols BioSig is a library for accessing files in several biomedical data formats (including EDF, BDF, GDF, BrainVision, BCI2000, CFWB, HL7aECG, SCP_ECG (EN1064), MFER, ACQ, CNT(Neuroscan), DEMG, EGI, EEG1100, FAMOS, SigmaPLpro, TMS32). The complete list of supported file formats is available at http://pub.ist.ac.at/~schloegl/biosig/TESTED . . This package provides debug symbols. Package: libclassad-dev Source: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 2834 Depends: neurodebian-popularity-contest, libclassad3 (= 7.8.8~dfsg.1-2~nd13.04+1) Conflicts: libclassad0-dev Replaces: libclassad0-dev Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: libdevel Filename: pool/main/c/condor/libclassad-dev_7.8.8~dfsg.1-2~nd13.04+1_amd64.deb Size: 523618 SHA256: 4a34f322c1f24035e02f5525260bd2d26a549e88fde9f53c6cabaecd4c2bc343 SHA1: 9d826009050f94080ffc4d45ceec23d5fa690452 MD5sum: b89b38e57d0b1132c4ab6ee556565e05 Description: Condor classads expression language - development library Classified Advertisements (classads) are the lingua franca of Condor, used for describing jobs, workstations, and other resources. There is a protocol for evaluating whether two classads match, which is used by the Condor central manager to determine the compatibility of jobs, and workstations where they may be run. . This package provides the static library and header files. Package: libclassad3 Source: condor Version: 7.8.8~dfsg.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 912 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libgcc1 (>= 1:4.1.1), libpcre3 (>= 8.10), libstdc++6 (>= 4.6) Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: science Filename: pool/main/c/condor/libclassad3_7.8.8~dfsg.1-2~nd13.04+1_amd64.deb Size: 275430 SHA256: 2b6e7a7569125db9fd5cd6f5c6a9c9023309b15df02be48e481c516b7ed7c9bb SHA1: b694eed2a370dcb69724310e8c77258df9a42287 MD5sum: 54e9abe8bbcb8eaa4f6f81dc0c9c482c Description: Condor classads expression language - runtime library Classified Advertisements (classads) are the lingua franca of Condor, used for describing jobs, workstations, and other resources. There is a protocol for evaluating whether two classads match, which is used by the Condor central manager to determine the compatibility of jobs, and workstations where they may be run. . This package provides the runtime library. Package: libdouble-conversion-dbg Source: double-conversion Version: 2.0.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 116 Depends: neurodebian-popularity-contest, libdouble-conversion1 (= 2.0.1-1~nd13.04+1) Multi-Arch: same Homepage: http://double-conversion.googlecode.com Priority: extra Section: debug Filename: pool/main/d/double-conversion/libdouble-conversion-dbg_2.0.1-1~nd13.04+1_amd64.deb Size: 103420 SHA256: 5bdc570f06fe8178aea9bb6a9dac54f29d36d3aeb3de4914c8e22e8706b87eb7 SHA1: e53a65813d068b151b63543a4ac421be99da4294 MD5sum: 953a4c9c00a92e6970dd151c87bc7cb8 Description: routines to convert IEEE floats to and from strings (debugging symbols) This library provides routines to convert IEEE single and double floats to and from string representations. It offers at lot of flexibility with respect to the conversion format: shortest, fixed, precision or exponential representation; decimal, octal or hexadecimal basis; control over number of digits, leading/trailing zeros and spaces. . The library consists of efficient conversion routines that have been extracted from the V8 JavaScript engine. The code has been refactored and improved so that it can be used more easily in other projects. . This package contains the detached debugging symbols of the library. Package: libdouble-conversion-dev Source: double-conversion Version: 2.0.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 199 Depends: neurodebian-popularity-contest, libdouble-conversion1 (= 2.0.1-1~nd13.04+1) Homepage: http://double-conversion.googlecode.com Priority: extra Section: libdevel Filename: pool/main/d/double-conversion/libdouble-conversion-dev_2.0.1-1~nd13.04+1_amd64.deb Size: 58198 SHA256: ec926821aa7741ae6a1c7b4305ab994f5baddf6a4b9720d9176c17403ceaa837 SHA1: 2d87a7d4246eb5355347b4a12e14777b4cb09d0a MD5sum: de7945cae3ddcc6cac17bd337aa0a67b Description: routines to convert IEEE floats to and from strings (development files) This library provides routines to convert IEEE single and double floats to and from string representations. It offers at lot of flexibility with respect to the conversion format: shortest, fixed, precision or exponential representation; decimal, octal or hexadecimal basis; control over number of digits, leading/trailing zeros and spaces. . The library consists of efficient conversion routines that have been extracted from the V8 JavaScript engine. The code has been refactored and improved so that it can be used more easily in other projects. . This package contains a static version of the library and development headers. Package: libdouble-conversion1 Source: double-conversion Version: 2.0.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 70 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libstdc++6 (>= 4.1.1) Multi-Arch: same Homepage: http://double-conversion.googlecode.com Priority: extra Section: libs Filename: pool/main/d/double-conversion/libdouble-conversion1_2.0.1-1~nd13.04+1_amd64.deb Size: 36138 SHA256: be684be25606b71fa54f42732b137342485691606e32b25f6b9df98ec8d82035 SHA1: 90d8cec916f0cf9a3b82fab04c14e25b361b0645 MD5sum: b08150e788f8f4784cc0f15b78fbe87e Description: routines to convert IEEE floats to and from strings This library provides routines to convert IEEE single and double floats to and from string representations. It offers at lot of flexibility with respect to the conversion format: shortest, fixed, precision or exponential representation; decimal, octal or hexadecimal basis; control over number of digits, leading/trailing zeros and spaces. . The library consists of efficient conversion routines that have been extracted from the V8 JavaScript engine. The code has been refactored and improved so that it can be used more easily in other projects. . This package contains a shared version of the library. Package: libglew1.9 Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 632 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.2.5), libgl1-mesa-glx | libgl1 Suggests: glew-utils Conflicts: libglew1 Multi-Arch: same Homepage: http://glew.sourceforge.net Priority: optional Section: libs Filename: pool/main/g/glew/libglew1.9_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 174138 SHA256: 4dd914f7cd82d7a2d73d67ec9a1e3fe5992cdff265f1b543be2c651fa06206c7 SHA1: 53e4d5e9ef0b959c8e73248343be71fd36a56e5a MD5sum: 3691e4a81f9aabbf3c6d80c0dedde97d Description: OpenGL Extension Wrangler - runtime environment For more information about GLEW please refer to the description of the libglew-dev package. . This package contains the runtime support files. Package: libglew1.9-dbg Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 149 Depends: neurodebian-popularity-contest, libglew1.9 (= 1.9.0-3~bnd1~nd13.04+1) Homepage: http://glew.sourceforge.net Priority: extra Section: debug Filename: pool/main/g/glew/libglew1.9-dbg_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 41072 SHA256: 9d7c8639b5f79905936b9ea863a0bc6052a54d3613c9e0a6728d0cb972732ed6 SHA1: 90f88a164624e7e2eb27dfa05ad361c0a67ad765 MD5sum: 1c86c69ca3e4b24839985231998e524a Description: OpenGL Extension Wrangler (debugging symbols) The OpenGL Extension Wrangler, GLEW for short, is a library that handles initialization of OpenGL extensions in a portable and simple way. Once the program initializes the library and checks the availability of extensions, it can safely call the entry points defined by the extension. Currently GLEW supports almost all the extensions found in the OpenGL extension registry (http://www.opengl.org/registry). . This package contains the debugging symbols for libglew1.9. Package: libglew1.9-dev Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1000 Depends: neurodebian-popularity-contest, libgl1-mesa-dev | libgl-dev, libglew1.9 (= 1.9.0-3~bnd1~nd13.04+1), libglu1-mesa-dev | libglu-dev Conflicts: libglew-dev, libglew1.6-dev Provides: libglew1.5-dev, libglew1.6-dev Multi-Arch: same Homepage: http://glew.sourceforge.net Priority: optional Section: libdevel Filename: pool/main/g/glew/libglew1.9-dev_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 153250 SHA256: ab3cbc43cc28f44e80d3248dda4ba61fbdb573c0684378393cff48fed81b853d SHA1: 818909da7beb49cf3c84a76d5bf0a2fc01d9964b MD5sum: 3a9ab8d6d9cb6253f32dd2bee3a28cf3 Description: OpenGL Extension Wrangler - development environment The OpenGL Extension Wrangler, GLEW for short, is a library that handles initialization of OpenGL extensions in a portable and simple way. Once the program initializes the library and checks the availability of extensions, it can safely call the entry points defined by the extension. Currently GLEW supports almost all the extensions found in the OpenGL extension registry (http://www.opengl.org/registry). . This package contains the development documentation as well as the required header files. Package: libglewmx1.9 Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 559 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.2.5), libgl1-mesa-glx | libgl1 Conflicts: libglew1 Multi-Arch: same Homepage: http://glew.sourceforge.net Priority: optional Section: libs Filename: pool/main/g/glew/libglewmx1.9_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 158330 SHA256: 62102d0ccf66f8a10770e119dee9ef7006fe3a5894e51ac0657df56d5df3f467 SHA1: 5ce1e2e8046c4a911814bb3605806fa6c1773b41 MD5sum: d6798ada7dd9bad2dd5077d85e55a37f Description: OpenGL Extension Wrangler (Multiple Rendering Contexts) For more information about GLEW please refer to the description of the libglewmx-dev package. . This package contains the runtime support files, built with GLEW_MX option, adding support for thread-safe usage of multiple rendering contexts. Package: libglewmx1.9-dbg Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 122 Depends: neurodebian-popularity-contest, libglewmx1.9 (= 1.9.0-3~bnd1~nd13.04+1) Homepage: http://glew.sourceforge.net Priority: extra Section: debug Filename: pool/main/g/glew/libglewmx1.9-dbg_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 33058 SHA256: acb3acf8024b2ee08dd92658dedf9c2ece33bc0748f0b008edcd0e8b2348fe7a SHA1: 5a72b2978e08bff3fe5825bbbc622cd659dca38c MD5sum: 6334d8d41cc32bc0a451ec3591094e90 Description: OpenGL Extension Wrangler MX (debugging symbols) The OpenGL Extension Wrangler, GLEW for short, is a library that handles initialization of OpenGL extensions in a portable and simple way. Once the program initializes the library and checks the availability of extensions, it can safely call the entry points defined by the extension. Currently GLEW supports almost all the extensions found in the OpenGL extension registry (http://www.opengl.org/registry). . This package contains the debugging symbols for libglewmx1.9. Package: libglewmx1.9-dev Source: glew Version: 1.9.0-3~bnd1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 12 Depends: neurodebian-popularity-contest, libglew1.9-dev, libglewmx1.9 (= 1.9.0-3~bnd1~nd13.04+1) Conflicts: libglewmx-dev, libglewmx1.6-dev Provides: libglewmx1.5-dev, libglewmx1.6-dev Multi-Arch: same Homepage: http://glew.sourceforge.net Priority: optional Section: libdevel Filename: pool/main/g/glew/libglewmx1.9-dev_1.9.0-3~bnd1~nd13.04+1_amd64.deb Size: 8836 SHA256: 684aa0a8630b98c4ea1b942050effea611f547b02da5e9957aca8dcaf122e99f SHA1: ef8cbeadd4aed6e8ae8e00530aa901b7cedf7084 MD5sum: 15620bd7a770b3fb9ec32a62cead270d Description: OpenGL Extension Wrangler MX - development environment The OpenGL Extension Wrangler, GLEW for short, is a library that handles initialization of OpenGL extensions in a portable and simple way. Once the program initializes the library and checks the availability of extensions, it can safely call the entry points defined by the extension. Currently GLEW supports almost all the extensions found in the OpenGL extension registry (http://www.opengl.org/registry). . This package contains the development libraries compiled with GLEW_MX. Package: libguac-client-rdp0 Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 104 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libcairo2 (>= 1.6.0), libfreerdp1 (>= 1.0.1), libguac5, libogg0 (>= 1.0rc3), libvorbis0a (>= 1.1.2), libvorbisenc2 (>= 1.1.2), ghostscript Recommends: libfreerdp-plugins-standard Multi-Arch: same Homepage: http://guac-dev.org/ Priority: extra Section: libs Filename: pool/main/g/guacamole-server/libguac-client-rdp0_0.8.3-1~nd13.04+1_amd64.deb Size: 36216 SHA256: 1a14d77a09524fc74a362a1be1405da6156d0764603e0b9d7aaee1d6631d6b65 SHA1: 959edc8d204d4d5f8420f7822160e0f3bf81d833 MD5sum: ac1b0c6dc7cbee2a676427898c7962a9 Description: RDP support plugin for Guacamole A plugin for the Guacamole proxy daemon (guacd) that provides support for the RDP protocol (Windows Remote Desktop). Package: libguac-client-ssh0 Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 52 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libcairo2 (>= 1.2.4), libglib2.0-0 (>= 2.12.0), libguac5, libpango1.0-0 (>= 1.22.0), libssh-4 (>= 0.3.91) Multi-Arch: same Homepage: http://guac-dev.org/ Priority: extra Section: libs Filename: pool/main/g/guacamole-server/libguac-client-ssh0_0.8.3-1~nd13.04+1_amd64.deb Size: 25636 SHA256: aaa8ff0c4cbfc87e881a429cc469f6a58675656ce8837f54777858025488488d SHA1: 584f6ffd50f24c8a60acbd45786bf355036966c1 MD5sum: 5787a9290af64aeb038b1dbf354b76e4 Description: SSH support plugin for Guacamole A plugin for the Guacamole proxy daemon (guacd) that provides support for the SSH protocol. Package: libguac-client-vnc0 Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 27 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libcairo2 (>= 1.6.0), libguac5, libpulse0 (>= 1:0.99.1), libvncserver0 Recommends: vnc4server Multi-Arch: same Homepage: http://guac-dev.org/ Priority: extra Section: libs Filename: pool/main/g/guacamole-server/libguac-client-vnc0_0.8.3-1~nd13.04+1_amd64.deb Size: 11964 SHA256: 104eb01f87b73d9f20dc00a509e1efcc114e38b1c247e1ecc29b31470244cc07 SHA1: 37f3fb3ee903b63113bd9e7e2313df188848f51b MD5sum: edea193c4cb562d10ae2bd07035e227a Description: VNC support plugin for Guacamole A plugin for the Guacamole proxy daemon (guacd) that provides support for the VNC protocol. Package: libguac-dev Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 214 Depends: neurodebian-popularity-contest, libguac5 (= 0.8.3-1~nd13.04+1) Replaces: libguac1-dev Multi-Arch: same Homepage: http://guac-dev.org/ Priority: extra Section: libdevel Filename: pool/main/g/guacamole-server/libguac-dev_0.8.3-1~nd13.04+1_amd64.deb Size: 45080 SHA256: 7c169d61e8ca9ae45d6d9658baff938b0c14e34578f2d71fe7796d3638604bf7 SHA1: 7b56358c4ade13574d93cf66f17dfe76f4deb009 MD5sum: 761c80e11bb0cced96084eed56092cae Description: Development headers for the core Guacamole library The development headers for the core Guacamole library used by guacd and all client plugins. This package is required for development of new client plugins, or for building existing plugins and guacd. Package: libguac5 Source: guacamole-server Version: 0.8.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 59 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.17), libcairo2 (>= 1.2.4), libogg0 (>= 1.0rc3), libpng12-0 (>= 1.2.13-4), libvorbis0a (>= 1.1.2), libvorbisenc2 (>= 1.1.2) Multi-Arch: same Homepage: http://guac-dev.org/ Priority: extra Section: libs Filename: pool/main/g/guacamole-server/libguac5_0.8.3-1~nd13.04+1_amd64.deb Size: 25158 SHA256: 21f893c82db59f06f70d64477aef010eaeaaad33c0a13dadc035fb47617dccb8 SHA1: e241ca9dbfd2dc2400e90cf5b9b8279b2ca21f9d MD5sum: 68b22acc15c17ef7e9f4bcce58b274b4 Description: Core Guacamole library used by guacd and client plugins The core Guacamole library which both guacd and client plugins depend on to provide low-level I/O and protocol support. Package: libinsighttoolkit4-dev Source: insighttoolkit4 Version: 4.2.1-2~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 25779 Depends: neurodebian-popularity-contest, libinsighttoolkit4.2 (= 4.2.1-2~nd12.10+1+nd13.04+1), libgdcm2-dev Recommends: libfftw3-dev, uuid-dev Suggests: insighttoolkit4-examples Conflicts: libinsighttoolkit-dev, libinsighttoolkit3-dev Replaces: libinsighttoolkit-dev Homepage: http://www.itk.org/ Priority: optional Section: libdevel Filename: pool/main/i/insighttoolkit4/libinsighttoolkit4-dev_4.2.1-2~nd12.10+1+nd13.04+1_amd64.deb Size: 5275800 SHA256: 977de98947fa6c1fba96d111d3cb313d85a5678d7d18d699998a994b4d592509 SHA1: 20022f0fa9af6968846b7c40c14ca3d71a30474f MD5sum: e39a117b475bb8d7418654938c1c22d7 Description: Image processing toolkit for registration and segmentation - development ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both. . This package contains the development files needed to build your own ITK applications. Package: libinsighttoolkit4.2 Source: insighttoolkit4 Version: 4.2.1-2~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 21932 Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libgdcm2.2, libjpeg8 (>= 8c), libminc2-1, libpng12-0 (>= 1.2.13-4), libstdc++6 (>= 4.6), zlib1g (>= 1:1.2.3.3) Homepage: http://www.itk.org/ Priority: optional Section: libs Filename: pool/main/i/insighttoolkit4/libinsighttoolkit4.2_4.2.1-2~nd12.10+1+nd13.04+1_amd64.deb Size: 7144496 SHA256: e33757e5b81b89cc45f1dc76a2d2c088a393a7a341953429a284df4c76091c01 SHA1: 01edb99bc39475d96fde70ee58beb8b67f24e491 MD5sum: 478c09a4c994d757dd4987a150496970 Description: Image processing toolkit for registration and segmentation - runtime ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both. . This package contains the libraries needed to run ITK applications. Package: libmcpanel-dev Source: mcpanel Version: 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 4 Depends: neurodebian-popularity-contest, libmcpanel0 (= 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1) Homepage: http://cnbi.epfl.ch/software/mcpanel.html Priority: extra Section: libdevel Filename: pool/main/m/mcpanel/libmcpanel-dev_0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 2408 SHA256: 79f1a5d0c413d3f1c3b4b357b71c1be47c3be34d2ad5ce6dedc1403d92535ecd SHA1: 654224b931a71b85b68562c2ce378493351d2114 MD5sum: 177b197bbad7894e942e7606c02915d6 Description: Library to display multichannel data in realtime (Developement files) This package provides a library written in C implementing a set of widgets designed to view in realtime multichannels signals. Despite it has been initially design to view signals coming from a BIOSEMI Activetwo EEG system, it is totally system agnostic and any user of other system might find it useful. . This package contains the files needed to compile and link programs which use mcpanel Package: libmcpanel0 Source: mcpanel Version: 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 140 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgdk-pixbuf2.0-0 (>= 2.22.0), libglib2.0-0 (>= 2.31.8), libgtk2.0-0 (>= 2.14.0), libpango1.0-0 (>= 1.14.0), librtfilter1 (>= 1.0) Homepage: http://cnbi.epfl.ch/software/mcpanel.html Priority: extra Section: libs Filename: pool/main/m/mcpanel/libmcpanel0_0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 49192 SHA256: f4d14fdc152c34b2d1437b37e9eeb02eba55725ccaf30f43e225c292b8446d67 SHA1: 31423202e7ab631a127cf0e79ed0a781788cd3c5 MD5sum: 7e7d95d164a6c121e61f4ff87a19fad9 Description: Library to display multichannel data in realtime This package provides a library written in C implementing a set of widgets designed to view in realtime multichannels signals. Despite it has been initially design to view signals coming from a BIOSEMI Activetwo EEG system, it is totally system agnostic and any user of other system might find it useful. Package: libmcpanel0-dbg Source: mcpanel Version: 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 20 Depends: neurodebian-popularity-contest, libmcpanel0 (= 0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1) Homepage: http://cnbi.epfl.ch/software/mcpanel.html Priority: extra Section: debug Filename: pool/main/m/mcpanel/libmcpanel0-dbg_0.0-1~nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 6668 SHA256: c3517b480dd4de7c036cfb18921715de0c668634b4da0c97ef264203e53f3fae SHA1: 3433d65a6a0fce31f95a12e06500f83b7ca4a5b8 MD5sum: 0984961acf147c7b9cb743fc5ccb6205 Description: Library to display multichannel data in realtime (Debugging symbols) This package provides a library written in C implementing a set of widgets designed to view in realtime multichannels signals. Despite it has been initially design to view signals coming from a BIOSEMI Activetwo EEG system, it is totally system agnostic and any user of other system might find it useful. . This package contains the debugging information of the library. Package: libmia-2.0-8 Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 25821 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libboost-filesystem1.49.0 (>= 1.49.0-1), libboost-regex1.49.0 (>= 1.49.0-1), libboost-serialization1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-test1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libdcmtk2 (>= 3.6.0), libfftw3-single3, libgcc1 (>= 1:4.1.1), libglib2.0-0 (>= 2.12.0), libglibmm-2.4-1c2a (>= 2.33.13), libgsl0ldbl (>= 1.9), libgts-0.7-5 (>= 0.7.6), libitpp7, libjpeg8 (>= 8c), libnlopt0 (>= 2.3), libopenexr6 (>= 1.6.1), libpng12-0 (>= 1.2.13-4), libstdc++6 (>= 4.6), libtbb2 (>= 2.1~), libtiff5 (>> 4.0.0-1~), libvistaio14 (>= 1.2.14), libvtk5.8, libxml++2.6-2 (>= 2.34.2) Homepage: http://mia.sourceforge.net Priority: optional Section: libs Filename: pool/main/m/mia/libmia-2.0-8_2.0.13-1~nd13.04+1_amd64.deb Size: 3882988 SHA256: eaa97380ac420bb459b0a430c11d95c4bd51196108afa64f35bfaa20cecc0315 SHA1: 312b1a56c22b7bcc6350143ef3e72cdbe938e9e8 MD5sum: 6c1c0329fc051fbf0d50bba0c6c75ce6 Description: library for 2D and 3D gray scale image processing libmia comprises a set of libraries and plug-ins for general purpose 2D and 3D gray scale image processing and basic handling of triangular meshes. The libraries provide a basic infrastructure and generic algorithms, that can be specialized by specifying the apropriate plug-ins. Package: libmia-2.0-8-dbg Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 65992 Depends: neurodebian-popularity-contest, libmia-2.0-8 (= 2.0.13-1~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: extra Section: debug Filename: pool/main/m/mia/libmia-2.0-8-dbg_2.0.13-1~nd13.04+1_amd64.deb Size: 58828718 SHA256: 9b9c107fd617895e2b7653ec2740ec95735eb33eb9a55e77b53c5e58403e7916 SHA1: 8625120cbafd9b6b8944324257927c4327fba249 MD5sum: 96b8c2e16790596bae18bb3e13310893 Description: Debug information for the MIA library libmia comprises a set of libraries and plug.ins for general purpose 2D and 3D gray scale image processing and basic handling of triangular meshes. The libraries provide a basic infrastructure and generic algorithms, that can be specialized by specifying the apropriate plug-ins. libmia is library for general purpouse 2D and 3D gray scale image processing. This package provides the debug information of the library. Package: libmia-2.0-dev Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1087 Depends: neurodebian-popularity-contest, libmia-2.0-8 (= 2.0.13-1~nd13.04+1), libxml++2.6-dev (>= 2.34.1), libitpp-dev (>= 4.2), libtbb-dev, libgsl0-dev, libboost-all-dev (>= 1.46.1), libfftw3-dev, libblas-dev Recommends: libmia-2.0-doc Homepage: http://mia.sourceforge.net Priority: optional Section: libdevel Filename: pool/main/m/mia/libmia-2.0-dev_2.0.13-1~nd13.04+1_amd64.deb Size: 170618 SHA256: f739e75c187fdc3bb50f3c2f470da11789928939cd9b4e375a87734c708570c5 SHA1: 60126b0823544a26c12c28f9e5c1c14d1ecd99f5 MD5sum: 3719847ebf2eaa02af8a2c463a87445c Description: library for 2D and 3D gray scale image processing, development files libmia comprises a set of libraries and plug-ins for general purpose 2D and 3D gray scale image processing and basic handling of triangular meshes. The libraries provide a basic infrastructure and generic algorithms, that can be specialized by specifying the apropriate plug-ins. This package provides the development files for the library. Package: libmia-2.0-doc Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 12977 Depends: neurodebian-popularity-contest, libjs-jquery Enhances: libmia-2.0-dev Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/m/mia/libmia-2.0-doc_2.0.13-1~nd13.04+1_all.deb Size: 778794 SHA256: a27c7f64692b847ab2d3c3beaa9b41810055bd2eebeec0dbb85c85441b6b298b SHA1: 3e13b1a709d58c78f44ac3a570eac301456a9372 MD5sum: 426e7747fea1774f40ddfad9b2d9eb9e Description: library for 2D and 3D gray scale image processing, documentation libmia comprises a set of libraries and plug-ins for general purpose 2D and 3D gray scale image processing and basic handling of triangular meshes. The libraries provide a basic infrastructure and generic algorithms, that can be specialized by specifying the apropriate plug-ins. This package provides the Doxygen generated API reference. Package: libmialm-dev Source: libmialm Version: 1.0.7-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 447 Depends: neurodebian-popularity-contest, libmialm3 (= 1.0.7-2~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: optional Section: libdevel Filename: pool/main/libm/libmialm/libmialm-dev_1.0.7-2~nd13.04+1_amd64.deb Size: 127566 SHA256: 4d0b85e3c2787dbe896d1702b19080e2b57380b297d713ef0d91784f8f4688a4 SHA1: b8757370b8a59891ce7ba950e941ff0b9e51634a MD5sum: d3fbbfff6458aef5ef2e9f06d683e9d5 Description: Development files for the MIA landmark library This library implements handling for landmarks and 3D view positioning for optimal landmark visibility, and in-and output of these landmarks. This library is part of the MIA tool chain for medical image analysis. This package contains the development files - headers, shared libraries, and pkg-config files. Package: libmialm-doc Source: libmialm Version: 1.0.7-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 232 Depends: neurodebian-popularity-contest Suggests: devhelp Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/libm/libmialm/libmialm-doc_1.0.7-2~nd13.04+1_all.deb Size: 25102 SHA256: f8de6602cafe72cf37dee0373dcc59c165e2241e04497a7feb21898fe3bf8c1f SHA1: c910483d2ccecbe624859a282676baeb37fd65a5 MD5sum: 0647a0bcaa78adafc9973ec5b16e4b4b Description: Documentation for the MIA landmark library This library implements handling for landmarks and 3D view positioning for optimal landmark visibility, and in-and output of these landmarks. This library is part of the MIA tool chain for medical image analysis. This package contains the library documentation. Package: libmialm3 Source: libmialm Version: 1.0.7-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 52 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.7), libglib2.0-0 (>= 2.16.0), libxml2 (>= 2.7.4) Homepage: http://mia.sourceforge.net Priority: optional Section: libs Filename: pool/main/libm/libmialm/libmialm3_1.0.7-2~nd13.04+1_amd64.deb Size: 21262 SHA256: da97db38b784fb44c56206c3045d741f69a16c57c8cbde1b3eb2f7c4720c7bbd SHA1: 4b19610815bc7ddceb101e5b5d43435d51dc023f MD5sum: e5259c38b927f1f68c31a9276e163e30 Description: Landmark handling for the MIA tool chain This library implements handling for landmarks and 3D view positioning for optimal landmark visibility, and in-and output of these landmarks. This library is part of the MIA tool chain for medical image analysis. Package: libmialm3-dbg Source: libmialm Version: 1.0.7-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 76 Depends: neurodebian-popularity-contest, libmialm3 (= 1.0.7-2~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: extra Section: debug Filename: pool/main/libm/libmialm/libmialm3-dbg_1.0.7-2~nd13.04+1_amd64.deb Size: 64244 SHA256: 3db77c94729b9cc47a7ca3f508bdaf5341db8dba80309240ba0aed2034fb313b SHA1: deb2144c8abfeb14c58ef884d0f43f7df86d4c08 MD5sum: 135c780508ea59676e7067b98eb3c260 Description: Debug information for the MIA landmark library This library implements handling for landmarks and 3D view positioning for optimal landmark visibility, and in-and output of these landmarks. This library is part of the MIA tool chain for medical image analysis. This package provides the debug information of the library. Package: libnlopt-dev Source: nlopt Version: 2.4.1+dfsg-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 598 Depends: neurodebian-popularity-contest, libnlopt0 (= 2.4.1+dfsg-1~nd13.04+1) Homepage: http://ab-initio.mit.edu/wiki/index.php/NLopt Priority: optional Section: libdevel Filename: pool/main/n/nlopt/libnlopt-dev_2.4.1+dfsg-1~nd13.04+1_amd64.deb Size: 210290 SHA256: 0a4adf2b27e9de4f990672f17b32d6dbf385fe21654e2e443a3ecf5c11915672 SHA1: f5eb34531a8ddb03d983a76300fe11b1eb5913a2 MD5sum: 13f841c51e4e5488274ca30496652eb2 Description: nonlinear optimization library -- development package NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. Its features include: . * Callable from C, C++, Fortran, GNU Octave, Python, GNU Guile, GNU R. * A common interface for many different algorithms * Support for large-scale optimization. * Both global and local optimization algorithms. * Algorithms using function values only (derivative-free) and also algorithms exploiting user-supplied gradients. * Algorithms for unconstrained optimization, bound-constrained optimization, and general nonlinear inequality/equality constraints. . This package contains the header files, static libraries and symbolic links that developers using NLopt library will need. Package: libnlopt-guile0 Source: nlopt Version: 2.4.1+dfsg-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 130 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libnlopt0 (= 2.4.1+dfsg-1~nd13.04+1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), guile-1.8 Multi-Arch: same Homepage: http://ab-initio.mit.edu/wiki/index.php/NLopt Priority: optional Section: libs Filename: pool/main/n/nlopt/libnlopt-guile0_2.4.1+dfsg-1~nd13.04+1_amd64.deb Size: 50062 SHA256: 09dab15ff0ef8253536439882f307cc1ab78c7bc863435b1a65c84f2095c15fe SHA1: c4909959ad592f067404d7604820f26af815cc3b MD5sum: 56018483b1c9bdb7854567357d2b3b51 Description: nonlinear optimization library -- Guile bindings NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. Its features include: . * Callable from C, C++, Fortran, GNU Octave, Python, GNU Guile, GNU R. * A common interface for many different algorithms * Support for large-scale optimization. * Both global and local optimization algorithms. * Algorithms using function values only (derivative-free) and also algorithms exploiting user-supplied gradients. * Algorithms for unconstrained optimization, bound-constrained optimization, and general nonlinear inequality/equality constraints. . This package contains the bindings for GNU Guile. Package: libnlopt0 Source: nlopt Version: 2.4.1+dfsg-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 421 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1) Multi-Arch: same Homepage: http://ab-initio.mit.edu/wiki/index.php/NLopt Priority: optional Section: libs Filename: pool/main/n/nlopt/libnlopt0_2.4.1+dfsg-1~nd13.04+1_amd64.deb Size: 186016 SHA256: 2b3b86b80ea2d52006f2d1dbe9f1a1c143abce79d622ee6fb17ad8e6ff00d900 SHA1: bce2d9bb836c078d03977cbac3f1fa4cee6bc3d9 MD5sum: 650f42a67e893aef61a255fdce73df7f Description: nonlinear optimization library NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. Its features include: . * Callable from C, C++, Fortran, GNU Octave, Python, GNU Guile, GNU R. * A common interface for many different algorithms * Support for large-scale optimization. * Both global and local optimization algorithms. * Algorithms using function values only (derivative-free) and also algorithms exploiting user-supplied gradients. * Algorithms for unconstrained optimization, bound-constrained optimization, and general nonlinear inequality/equality constraints. . This package provides the shared libraries required to run programs compiled with NLopt. To compile your own programs you also need to install libnlopt-dev. Package: libopenwalnut1 Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 7267 Depends: neurodebian-popularity-contest, fonts-liberation (>= 1.0.0), libboost-date-time1.49.0 (>= 1.49.0-1), libboost-filesystem1.49.0 (>= 1.49.0-1), libboost-regex1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-thread1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libgl1-mesa-glx | libgl1, libopenscenegraph80, libstdc++6 (>= 4.6) Suggests: nvidia-glx | fglrx-glx Homepage: http://www.openwalnut.org Priority: extra Section: libs Filename: pool/main/o/openwalnut/libopenwalnut1_1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1_amd64.deb Size: 1908486 SHA256: 44da583a9b74772ef751c828e09b5433d64013a734c765943e9429bb9e1a493a SHA1: a99e9aad0d3b4037a4e473983bc9773fa87ad147 MD5sum: bfc6853ac10dfbe9b9ee741275c95e12 Description: Framework for multi-modal medical and brain data visualization OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the core API of OpenWalnut. Package: libopenwalnut1-dev Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1997 Depends: neurodebian-popularity-contest, libopenwalnut1 (= 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1), libgl1-mesa-dev | libgl-dev, libopenscenegraph-dev (>= 3.0.0), libopenthreads-dev (>= 3.0.0), libboost-dev (>= 1.46.0), libboost-program-options-dev (>= 1.46.0), libboost-thread-dev (>= 1.46.0), libboost-filesystem-dev (>= 1.46.0), libboost-date-time-dev (>= 1.46.0), libboost-system-dev (>= 1.46.0), libboost-signals-dev (>= 1.46.0), libboost-regex-dev (>= 1.46.0), libeigen3-dev (>= 3.0.0) Homepage: http://www.openwalnut.org Priority: extra Section: libdevel Filename: pool/main/o/openwalnut/libopenwalnut1-dev_1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1_amd64.deb Size: 339170 SHA256: ed01652fe430101c0fe5992a50250ef91d3155c5503810fdfe7e5de26aad10a1 SHA1: 1fb2fe6a152b6ef99ba95b9eb6e24324a3b22e03 MD5sum: cbb706f9fc4b7f6d52e585bedddcba24 Description: Development files for the OpenWalnut visualization framework OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the headers for the core API of OpenWalnut. Package: libopenwalnut1-doc Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 44739 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://www.openwalnut.org Priority: extra Section: doc Filename: pool/main/o/openwalnut/libopenwalnut1-doc_1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1_all.deb Size: 5084324 SHA256: b0a7dc413175f3597402e70161e959884e8d518a36f152ffed90116a8b7c08d3 SHA1: 5451a819a3383183cd061292e50caeb81828a791 MD5sum: 1a7be52bebeadb6f18f29fe54bef6238 Description: Developer documentation for the OpenWalnut visualization framework OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the core API documentation of OpenWalnut. Package: libvistaio-dev Source: libvistaio Version: 1.2.16-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 172 Depends: neurodebian-popularity-contest, libvistaio14 (= 1.2.16-1~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: optional Section: libdevel Filename: pool/main/libv/libvistaio/libvistaio-dev_1.2.16-1~nd13.04+1_amd64.deb Size: 111920 SHA256: d789629847190fd67988efbf8f636cba8bf13ed8fb377aa63fed0cfb6f6b8348 SHA1: 7404e6e64e9fd28bca3db3f890d2e9999c442972 MD5sum: 346124ae7126af43137bd14f2192106a Description: Development files for the libvistaio library Vistaio is a library that handles loading and storing of data in a cross-platform manner. Its virtue is that the otherwise binary files provide an ascii header that makes it easy to get information about the contens of a file. It supports a variety of data types like images, vector fields and graphs. This is the development package containing the header files, and pkg-config script, and man pages. Package: libvistaio14 Source: libvistaio Version: 1.2.16-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 94 Pre-Depends: multiarch-support Depends: neurodebian-popularity-contest, libc6 (>= 2.14) Homepage: http://mia.sourceforge.net Priority: optional Section: libs Filename: pool/main/libv/libvistaio/libvistaio14_1.2.16-1~nd13.04+1_amd64.deb Size: 41776 SHA256: 938eda452fdfd5b6a410cb50e293b1427e40e1513925c3774cbce04757906393 SHA1: a25c4d41b89afd0c4bdab3f10f2b9e032a3cd19f MD5sum: 165123f81fbe23127c1cf0ea134bf4b7 Description: Library for loading and storing various types of binary data Vistaio is a library that handles loading and storing of data in a cross-platform manner. Its virtue is that the otherwise binary files provide an ascii header that makes it easy to get information about the contens of a file. It supports a variety of data types like images, vector fields and graphs. Package: libvistaio14-dbg Source: libvistaio Version: 1.2.16-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 100 Depends: neurodebian-popularity-contest, libvistaio14 (= 1.2.16-1~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: extra Section: debug Filename: pool/main/libv/libvistaio/libvistaio14-dbg_1.2.16-1~nd13.04+1_amd64.deb Size: 88854 SHA256: 4e5728bddd916f63da3c6750c8daefa4c8eb002908fe496b53f34de65a845122 SHA1: bedd4b7612c7dff6018674219fa9bcb68ce5eae9 MD5sum: b5e7fba7b15634072889c9e4236fd466 Description: Debug information for the libvistaio library Vistaio is a library that handles loading and storing of data in a cross-platform manner. Its virtue is that the otherwise binary files provide an ascii header that makes it easy to get information about the contens of a file. It supports a variety of data types like images, vector fields and graphs. This is package containing the debug information. Package: libvrpn-dev Source: vrpn Version: 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 659 Depends: neurodebian-popularity-contest, libvrpn0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1), libvrpnserver0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1) Homepage: http://www.cs.unc.edu/Research/vrpn/ Priority: extra Section: libdevel Filename: pool/main/v/vrpn/libvrpn-dev_07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 174192 SHA256: dcfc795b9c1e2b8647cd18323bef4c5bafa63cd44494aedd9e60aef5a0fbade2 SHA1: 6862adbfd22ebd325d3432a8506e0e5f2eef5047 MD5sum: 0ef37139ffd1047511ae9a186671d9b2 Description: Virtual Reality Peripheral Network (development files) The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a library and a set of servers that are designed to implement a network-transparent interface between application programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) system. The idea is to have a PC or other host at each VR station that controls the peripherals (tracker, button device, haptic device, analog inputs, sound, etc). VRPN provides connections between the application and all of the devices using the appropriate class-of-service for each type of device sharing this link. The application remains unaware of the network topology. Note that it is possible to use VRPN with devices that are directly connected to the machine that the application is running on, either using separate control programs or running all as a single program. . This package contains the development files Package: libvrpn0 Source: vrpn Version: 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 535 Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1) Homepage: http://www.cs.unc.edu/Research/vrpn/ Priority: extra Section: libs Filename: pool/main/v/vrpn/libvrpn0_07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 181978 SHA256: 57084fd03820638db520d3abd4ff390723adafc4830c0485bbfe5557796c34f8 SHA1: 7d0e1cac5d361a081447c273bfdd0f139b36e393 MD5sum: b08b49abc91ca1afa7a62b2af3b270d0 Description: Virtual Reality Peripheral Network (client library) The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a library and a set of servers that are designed to implement a network-transparent interface between application programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) system. The idea is to have a PC or other host at each VR station that controls the peripherals (tracker, button device, haptic device, analog inputs, sound, etc). VRPN provides connections between the application and all of the devices using the appropriate class-of-service for each type of device sharing this link. The application remains unaware of the network topology. Note that it is possible to use VRPN with devices that are directly connected to the machine that the application is running on, either using separate control programs or running all as a single program. . This package contains the client shared library Package: libvrpnserver0 Source: vrpn Version: 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1355 Depends: neurodebian-popularity-contest, libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0) Homepage: http://www.cs.unc.edu/Research/vrpn/ Priority: extra Section: libs Filename: pool/main/v/vrpn/libvrpnserver0_07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 436906 SHA256: 45bb7b34609759d9844432a459bf8906ef754025d0d360f6801ca5de70b41c94 SHA1: 678e2ddabde31ebad82e5dbe4e4ff56f841833ac MD5sum: c2f5da1eed0e4d387c2fb2f13c761ab3 Description: Virtual Reality Peripheral Network (server library) The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a library and a set of servers that are designed to implement a network-transparent interface between application programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) system. The idea is to have a PC or other host at each VR station that controls the peripherals (tracker, button device, haptic device, analog inputs, sound, etc). VRPN provides connections between the application and all of the devices using the appropriate class-of-service for each type of device sharing this link. The application remains unaware of the network topology. Note that it is possible to use VRPN with devices that are directly connected to the machine that the application is running on, either using separate control programs or running all as a single program. . This package contains the shared library use in the VRPN server Package: libvw-dev Source: vowpal-wabbit Version: 7.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2576 Depends: neurodebian-popularity-contest, libvw0 (= 7.3-1~nd13.04+1) Homepage: http://hunch.net/~vw/ Priority: optional Section: libdevel Filename: pool/main/v/vowpal-wabbit/libvw-dev_7.3-1~nd13.04+1_amd64.deb Size: 579704 SHA256: 21830c821c7bd7fcbee2b685da1ed4f2929e4231cec75aeb074d4a1fc3d050d3 SHA1: 74e0046c94562d824457909f49ddcfacd096b1e4 MD5sum: 14ad918d1ba6ce9eb050fbee93284bb0 Description: fast and scalable online machine learning algorithm - development files Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing . This package contains development files needed to compile and link programs which use vowpal-wabbit's libraries. Package: libvw0 Source: vowpal-wabbit Version: 7.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 726 Depends: neurodebian-popularity-contest, libboost-program-options1.49.0 (>= 1.49.0-1), libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0), zlib1g (>= 1:1.2.3.3) Homepage: http://hunch.net/~vw/ Priority: optional Section: libs Filename: pool/main/v/vowpal-wabbit/libvw0_7.3-1~nd13.04+1_amd64.deb Size: 305342 SHA256: 5533fd8aed2b86d650775d5741483bf60f7518ab7cb88359ffd1eca987f720b0 SHA1: e5a3301d907464ca6b0d98168e7a1b74df1611d8 MD5sum: a447b85f557c4b7ab2e5183d60c72abd Description: fast and scalable online machine learning algorithm - dynamic library Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing . This package contains vowpal-wabbit's dynamic libraries. Package: mia-tools Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 9067 Depends: neurodebian-popularity-contest, libmia-2.0-8 (= 2.0.13-1~nd13.04+1), libboost-filesystem1.49.0 (>= 1.49.0-1), libboost-regex1.49.0 (>= 1.49.0-1), libboost-serialization1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-test1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libglibmm-2.4-1c2a (>= 2.33.13), libgsl0ldbl (>= 1.9), libgts-0.7-5 (>= 0.7.6), libjpeg8 (>= 8c), libnlopt0 (>= 2.3), libopenexr6 (>= 1.6.1), libpng12-0 (>= 1.2.13-4), libstdc++6 (>= 4.6), libtbb2 (>= 2.1~), libtiff5 (>> 4.0.0-1~), libvistaio14 (>= 1.2.14), libvtk5.8, libxml++2.6-2 (>= 2.34.2) Recommends: mia-doc Homepage: http://mia.sourceforge.net Priority: optional Section: science Filename: pool/main/m/mia/mia-tools_2.0.13-1~nd13.04+1_amd64.deb Size: 1529906 SHA256: ab2eebcbf089a834f8a469249d620fd540b1f4bb2438b842e16cda14a6079c33 SHA1: e318e738ea39ed45701b54a61598f70899a2d332 MD5sum: 43860281e1b5d631832cc81e96b14a96 Description: Command line tools for gray scale image processing Command lines tools to run general purpose image processing tasks on 2D and 3D gray scale images, and basic operations on triangular meshes. Supported image processing algorithms are image filtering, combining, image registration, motion compensation for image series, and the estimation of various statiistics over images. Package: mia-tools-dbg Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 28067 Depends: neurodebian-popularity-contest, mia-tools (= 2.0.13-1~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: extra Section: debug Filename: pool/main/m/mia/mia-tools-dbg_2.0.13-1~nd13.04+1_amd64.deb Size: 25366960 SHA256: 7a01f9f0dbf9f9234d082dffd6d6f45f792195aba61f146b12c377755ce65394 SHA1: 4e97f2f6cd46069e462e5dfb538838eaf9c08e86 MD5sum: 18448c53ccc1345ad101c64d560599de Description: Debugging information for the MIA command line tools Debug information for the MIA command lines tools. These tools provide the means to run general purpose image processing tasks on 2D and 3D gray scale images, and basic operations on triangular meshes from the command line. Supported image processing algorithms are image filtering, combining, image registration, motion compensation for image series, and the estimation of various statiistics over images. Package: mia-tools-doc Source: mia Version: 2.0.13-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1134 Depends: neurodebian-popularity-contest Enhances: mia-tools Homepage: http://mia.sourceforge.net Priority: optional Section: doc Filename: pool/main/m/mia/mia-tools-doc_2.0.13-1~nd13.04+1_all.deb Size: 72790 SHA256: ee3a4b4aec826682d9db0129ee48d93528e1a1677bd906ee8fb55b9290c4eacf SHA1: 767900133589f8ea59fbcbfa6fd3abc55010b53f MD5sum: 752a1e81809d66f44decdc745fa5cf6d Description: Cross-referenced documentation of the MIA command line tools Cross referenced documentation of the command line tools and plug-ins that are provided by the MIA gray scale image processing tool chain. These lines tools to provide the means to run general purpose image processing tasks on 2D and 3D gray scale images, and basic operations on triangular meshes interactively from the command line. Supported image processing algorithms are image filtering, combining, image registration, motion compensation for image series, and the estimation of various statistics over images. Package: mialmpick Version: 0.2.10-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 174 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgdk-pixbuf2.0-0 (>= 2.22.0), libgl1-mesa-glx | libgl1, libglade2-0 (>= 1:2.6.1), libglib2.0-0 (>= 2.31.18), libglu1-mesa | libglu1, libgnomeui-0 (>= 2.22.0), libgtk2.0-0 (>= 2.20.0), libgtkglext1, libmialm3 (>= 1.0.7), libpng12-0 (>= 1.2.13-4), libpopt0 (>= 1.14), libvistaio14 (>= 1.2.14), libx11-6 Homepage: http://mia.sourceforge.net Priority: optional Section: science Filename: pool/main/m/mialmpick/mialmpick_0.2.10-1~nd13.04+1_amd64.deb Size: 80650 SHA256: 63cb5f85e89fcb65174c297368fc91b1e1ed711306075ae78ab4433c5c370ccf SHA1: 900097def825d813cbdf11c5e9b238508a01112b MD5sum: 39ae0d0c0eb6f33114132e2d6777a94d Description: Tools for landmark picking in 3D volume data sets This tool provides a simple 3D renderer that can visualize surfaces directly from 3D volumes and can be used to set 3D landmarks. It is best suited for CT data sets. Package: mialmpick-dbg Source: mialmpick Version: 0.2.10-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 204 Depends: neurodebian-popularity-contest, mialmpick (= 0.2.10-1~nd13.04+1) Homepage: http://mia.sourceforge.net Priority: extra Section: debug Filename: pool/main/m/mialmpick/mialmpick-dbg_0.2.10-1~nd13.04+1_amd64.deb Size: 177474 SHA256: 0f1918bfb43a86a6bf9ea12cd652ac8d42a235b713e5ac303f735e2d9e5480b7 SHA1: 7df65a13a2556e066a044d9a7de4b77213beda18 MD5sum: 458af13012b18e593677d14e44e34090 Description: Debug information landmark picking tool mialmpick This tool provides a simple 3D renderer that can visualize surfaces directly from 3D volumes and can be used to set 3D landmarks. It is best suited for CT data sets. This package provides the debug information. Package: mriconvert Version: 1:2.0.7-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 3209 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0), libwxbase2.8-0 (>= 2.8.12.1), libwxgtk2.8-0 (>= 2.8.12.1) Homepage: http://lcni.uoregon.edu/~jolinda/MRIConvert/ Priority: optional Section: science Filename: pool/main/m/mriconvert/mriconvert_2.0.7-1~nd13.04+1_amd64.deb Size: 1024434 SHA256: fa33eb613653d0b11865103ed39c01b702ed0ede7fe3f9620be98a90cef34b29 SHA1: e0d6e6ba78321f40fbd49a7ffb4e0cab3745f924 MD5sum: 0e73f936447259538e1334cd33c021b5 Description: medical image file conversion utility MRIConvert is a medical image file conversion utility that converts DICOM files to NIfTI 1.1, Analyze 7.5, SPM99/Analyze, BrainVoyager, and MetaImage volume formats. Package: mricron Version: 0.20130828.1~dfsg.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 19646 Depends: neurodebian-popularity-contest, libatk1.0-0 (>= 1.12.4), libc6 (>= 2.2.5), libcairo2 (>= 1.2.4), libgdk-pixbuf2.0-0 (>= 2.22.0), libglib2.0-0 (>= 2.12.0), libgtk2.0-0 (>= 2.24.0), libpango1.0-0 (>= 1.14.0), libx11-6, mricron-data Suggests: mricron-doc, fsl Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: science Filename: pool/main/m/mricron/mricron_0.20130828.1~dfsg.1-1~nd13.04+1_amd64.deb Size: 6408202 SHA256: da256301a6571339de8f06ef00c0fb98434d6f34e84c9cb0e76b0b1accd53a4a SHA1: 1408df2bc5c801a6e018b0b025f68033854507b4 MD5sum: c813a4662b4ccfd74e8df3a184d4142b Description: magnetic resonance image conversion, viewing and analysis This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . In addition to 'mricron', this package also provides 'dcm2nii' that supports converting DICOM and PAR/REC images into the NIfTI format, and 'npm' for non-parametric data analysis. Package: mricron-data Source: mricron Version: 0.20130828.1~dfsg.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1710 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: science Filename: pool/main/m/mricron/mricron-data_0.20130828.1~dfsg.1-1~nd13.04+1_all.deb Size: 1664524 SHA256: 179f46350fc86243f6af340e0ba92f4d8cbafb46d0c085be129f29f8ac846159 SHA1: cfa43237268d891d2472016ee77e8c7470298c30 MD5sum: cb9e0cda7870731a8d15ff9e016e002b Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides data files for MRIcron, such as brain atlases, anatomy, and color schemes. Package: mricron-doc Source: mricron Version: 0.20130828.1~dfsg.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1019 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: doc Filename: pool/main/m/mricron/mricron-doc_0.20130828.1~dfsg.1-1~nd13.04+1_all.deb Size: 737510 SHA256: f6522a77a07ff991e70a16fbeb0a146e3744049373534f465c99da6da03aabe7 SHA1: fdfd8b08dfb6c00c23ceb6b8b139ba16d80e09a1 MD5sum: c16e9f95bb777af9a6fa7517187931d4 Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides documentation for MRIcron in HTML format. Package: mrtrix Version: 0.2.12-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Team Installed-Size: 9157 Depends: neurodebian-popularity-contest, libatkmm-1.6-1 (>= 2.22.1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libgl1-mesa-glx | libgl1, libglib2.0-0 (>= 2.12.0), libglibmm-2.4-1c2a (>= 2.33.13), libglu1-mesa | libglu1, libgsl0ldbl (>= 1.9), libgtk2.0-0 (>= 2.8.0), libgtkglext1, libgtkmm-2.4-1c2a (>= 1:2.24.0), libsigc++-2.0-0c2a (>= 2.0.2), libstdc++6 (>= 4.6), zlib1g (>= 1:1.1.4) Suggests: mrtrix-doc, octave, matlab-support Homepage: http://www.brain.org.au/software/mrtrix Priority: extra Section: science Filename: pool/main/m/mrtrix/mrtrix_0.2.12-1~nd13.04+1_amd64.deb Size: 2871576 SHA256: 04dc34bbddd2fcbb4bae465a8c1ff84202545b18c72116ef17b275e288ede8c8 SHA1: 43788942c5c0595ab32b4ce610da23c2c136e952 MD5sum: e82969fa27dc59b562cdbd4a8683a9fe Description: diffusion-weighted MRI white matter tractography Set of tools to perform diffusion-weighted MRI white matter tractography of the brain in the presence of crossing fibres, using Constrained Spherical Deconvolution, and a probabilisitic streamlines algorithm. Magnetic resonance images in DICOM, ANALYZE, or uncompressed NIfTI format are supported. Package: mrtrix-doc Source: mrtrix Version: 0.2.12-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 3522 Depends: neurodebian-popularity-contest Homepage: http://www.brain.org.au/software/mrtrix Priority: extra Section: doc Filename: pool/main/m/mrtrix/mrtrix-doc_0.2.12-1~nd13.04+1_all.deb Size: 3316748 SHA256: 8d6e51d5d33441b9dd92cf3f79517636166e1f864d52e2a1b2e8a9b1a294c464 SHA1: 2875d1896c02c71b25ccd158bb4ab7f725fb8ef3 MD5sum: 54a504dc376ef7e2fad515f88d32e960 Description: documentation for mrtrix Set of tools to perform diffusion-weighted MRI white matter tractography of the brain in the presence of crossing fibres, using Constrained Spherical Deconvolution, and a probabilisitic streamlines algorithm. Magnetic resonance images in DICOM, ANALYZE, or uncompressed NIfTI format are supported. . This package provides the documentation in HTML format. Package: netselect Version: 0.3.ds1-25~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 51 Depends: neurodebian-popularity-contest, libc6 (>= 2.15), debconf (>= 0.5) | debconf-2.0 Suggests: netselect-apt Homepage: http://github.com/apenwarr/netselect Priority: optional Section: net Filename: pool/main/n/netselect/netselect_0.3.ds1-25~nd13.04+1_amd64.deb Size: 32650 SHA256: 47a8aabd5a72deab770cd7214bf92d1913a47947e6a10ec0e63f074b25c37c8e SHA1: 46b8d6602a351e8511043c8f4449725c8c543c3c MD5sum: cedf1d83c4759b10ad3147bc6a258adc Description: speed tester for choosing a fast network server This package provides a utility that can perform parallelized tests on distant servers using either UDP traceroutes or ICMP queries. . It can process a (possibly very long) list of servers, and choose the fastest/closest one automatically. Package: netselect-apt Source: netselect Version: 0.3.ds1-25~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 26 Depends: neurodebian-popularity-contest, wget, netselect (>= 0.3.ds1-17) Recommends: curl Suggests: dpkg-dev Enhances: apt Homepage: http://github.com/apenwarr/netselect Priority: optional Section: net Filename: pool/main/n/netselect/netselect-apt_0.3.ds1-25~nd13.04+1_all.deb Size: 17854 SHA256: 26e593f988079fc2a6960f50adb16cd4bb3b10fc61ecb91b4ca0e56f4dc891a8 SHA1: 2ad9d34f766aa3282b89fb54560cd6633e497e1f MD5sum: b2905fed81d545b50bf473bbb4d7a42b Description: speed tester for choosing a fast Debian mirror This package provides a utility that can choose the best Debian mirror by downloading the full mirror list and using netselect to find the fastest/closest one. . It can output a sources.list(5) file that can be used with package management tools such as apt or aptitude. Package: neurodebian Version: 0.34~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 41 Depends: python, wget, neurodebian-archive-keyring, debconf (>= 0.5) | debconf-2.0 Recommends: netselect Suggests: neurodebian-desktop, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian_0.34~nd13.04+1_all.deb Size: 21428 SHA256: e14fd2d11da6b2fb34f39802c8f8e9ceba6dccaef76d5627e893344b96f0de8e SHA1: 45c3475edf719bea844fc7d14be6f60552851958 MD5sum: f74b14d8b514562f254da1306b9f6f05 Description: turnkey platform for the neuroscience The NeuroDebian project integrates and maintain a variety of neuroscience-oriented (such as AFNI, FSL, PsychoPy, etc.) and many generic computational (such as condor, pandas, etc.) software projects within Debian. . This package enables NeuroDebian repository on top of the stock Debian or Ubuntu system. Package: neurodebian-archive-keyring Source: neurodebian Version: 0.34~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 11 Breaks: neurodebian-keyring (<< 0.34~) Replaces: neurodebian-keyring (<< 0.34~) Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-archive-keyring_0.34~nd13.04+1_all.deb Size: 9406 SHA256: 5d584cf074bb63fc121a69bb7d4e6865a758dc061649ff121639f0299322492d SHA1: 0aeca35e5e5f810fd8afe8b50ce545fbdc2a6f38 MD5sum: fed6d093119268d7603a18b575f0db83 Description: GnuPG archive keys of the NeuroDebian archive The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-desktop Source: neurodebian Version: 0.34~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 146 Depends: ssh-askpass-gnome | ssh-askpass, desktop-base, gnome-icon-theme, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-desktop_0.34~nd13.04+1_all.deb Size: 117568 SHA256: d9cf3b9e4b50817f1af38b70867af5c46a132f5d34cc8f63ae91a1f5c4523ba2 SHA1: 4416f9538c0cf85d4ac4511aafe4a5d183b3ba8a MD5sum: c3653b7581d3b6a9bf7249b57137ea90 Description: neuroscience research environment This package contains NeuroDebian artwork (icons, background image) and a NeuroDebian menu featuring most popular neuroscience tools automatically installed upon initial invocation. Package: neurodebian-dev Source: neurodebian Version: 0.34~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 81 Depends: devscripts, cowbuilder, neurodebian-archive-keyring Recommends: python, zerofree, moreutils, time, ubuntu-keyring, debian-archive-keyring, apt-utils Suggests: virtualbox-ose, virtualbox-ose-fuse Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-dev_0.34~nd13.04+1_all.deb Size: 34226 SHA256: 3a706051cfac62e526b9266a4000d55aaeea01f2d5d0f672f3dd96296cfdfa28 SHA1: 28559611e0e10350b90ad561cc4521b377467e3b MD5sum: cf04ecace2166d2d18a79293a9d83300 Description: NeuroDebian development tools neuro.debian.net sphinx website sources and development tools used by NeuroDebian to provide backports for a range of Debian/Ubuntu releases. Package: neurodebian-guest-additions Source: neurodebian Version: 0.32~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 107 Pre-Depends: virtualbox-ose-guest-utils, virtualbox-ose-guest-x11, virtualbox-ose-guest-dkms Depends: sudo, neurodebian-desktop, gdm | lightdm, zenity Recommends: chromium-browser, update-manager-gnome, update-notifier Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-guest-additions_0.32~nd13.04+1_all.deb Size: 15368 SHA256: a17f7ae3ceef942087450f8d19e2b87b142f5787ec1981beb22a29499f735bde SHA1: c801838145de1ee7c04f30b6f725c5922174205d MD5sum: e931791983e6ca2f27adfa619982b7d0 Description: NeuroDebian guest additions (DO NOT INSTALL OUTSIDE VIRTUALBOX) This package configures a Debian installation as a guest operating system in a VirtualBox-based virtual machine for NeuroDebian. . DO NOT install this package unless you know what you are doing! For example, installation of this package relaxes several security mechanisms. Package: neurodebian-keyring Source: neurodebian Version: 0.32~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8 Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-keyring_0.32~nd13.04+1_all.deb Size: 7624 SHA256: 239d23454e0e47195450883b29b63d8f417dd5719c390765a69518f4e6af075f SHA1: 8e8b3228adaa59e3178d615bf671324fb96e8eb6 MD5sum: f7f0dd6a1bc84b7d45235919ecc716c0 Description: GnuPG archive keys of the NeuroDebian archive The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-popularity-contest Source: neurodebian Version: 0.34~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 14 Depends: popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-popularity-contest_0.34~nd13.04+1_all.deb Size: 11490 SHA256: 5d019234fcd6a50ab44a783b325e61accc1842eb586ad96a22216a6c15f49838 SHA1: 0da2ae023075753fa2c7a37544bf7fac21231c7f MD5sum: f1a813821b385b146a8e629b5fe8faf0 Description: Helper for NeuroDebian popularity contest submissions This package is a complement to the generic popularity-contest package to enable anonymous submission of usage statistics to NeuroDebian in addition to the popcon submissions to the underlying distribution (e.g. Debian or Ubuntu) popcon server. . Your participation in popcon is important for following reasons: - Popular packages receive more attention from developers, bugs are fixed faster and updates are provided quicker. - Assure that we do not drop support for a previous release of Debian or Ubuntu while are active users. - User statistics could be used by upstream research software developers to acquire funding for continued development. . It has an effect only if you have decided to participate in the Popularity Contest of your distribution, i.e. Debian or Ubuntu. You can always enable or disable your participation in popcon by running 'dpkg-reconfigure popularity-contest' as root. Package: nifti2dicom Version: 0.4.8-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2247 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libgdcm2.2, libinsighttoolkit4.3, libstdc++6 (>= 4.6), nifti2dicom-data (= 0.4.8-1~nd13.04+1) Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/nifti2dicom_0.4.8-1~nd13.04+1_amd64.deb Size: 496062 SHA256: 9a33a257ff0ab382a933d94ae4e8efbb2091682ab1cab613dc69e2b36e63f1a1 SHA1: 497eb02f035f6cbda4003be6876659e35ad069a3 MD5sum: cfd81897f99df99a220523c095762b9d Description: convert 3D medical images to DICOM 2D series Nifti2Dicom is a convertion tool that converts 3D NIfTI files (and other formats supported by ITK, including Analyze, MetaImage Nrrd and VTK) to DICOM. Unlike other conversion tools, it can import a DICOM file that is used to import the patient and study DICOM tags, and allows you to edit the accession number and other DICOM tags, in order to create a valid DICOM that can be imported in a PACS. . This package includes the command line tools. Package: nifti2dicom-data Source: nifti2dicom Version: 0.4.8-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 606 Depends: neurodebian-popularity-contest Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/nifti2dicom-data_0.4.8-1~nd13.04+1_all.deb Size: 615082 SHA256: a195fb674c4a1a95c42be1473d9076f64cc477e1dd4f2bf37e82917a950751cf SHA1: f3ae918562a0170f5b586531bf5d33cff047fb9c MD5sum: ad045f98465c1036f31f13903462b814 Description: data files for nifti2dicom This package contains architecture-independent supporting data files required for use with nifti2dicom, such as such as documentation, icons, and translations. Package: nuitka Version: 0.5.4+ds-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2218 Depends: neurodebian-popularity-contest, g++-4.9 | g++-4.8 | g++-4.7 | g++-4.6 (>= 4.6.1) | g++-4.5 | g++-4.4 | clang (>= 3.0), scons (>= 2.0.0), python-dev (>= 2.6.6-2), python (>= 2.7.1-0ubuntu2) Recommends: python-lxml (>= 2.3), python-qt4 (>= 4.8.6), strace Suggests: ccache Homepage: http://nuitka.net Priority: optional Section: python Filename: pool/main/n/nuitka/nuitka_0.5.4+ds-1~nd13.04+1_all.deb Size: 591380 SHA256: 07783d25700e01e1275180e8ec1b1ac15d3834fb5f58260ee3e8414c513a4b34 SHA1: ab477225567e887e3f068a1b374670572730350b MD5sum: ae4079333b9491cfbb851c63cffeb2d4 Description: Python compiler with full language support and CPython compatibility This Python compiler achieves full language compatibility and compiles Python code into compiled objects that are not second class at all. Instead they can be used in the same way as pure Python objects. Package: numdiff Version: 5.8.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 898 Depends: neurodebian-popularity-contest, libc6 (>= 2.17), dpkg (>= 1.15.4) | install-info Homepage: http://nongnu.org/numdiff/ Priority: extra Section: science Filename: pool/main/n/numdiff/numdiff_5.8.1-1~nd13.04+1_amd64.deb Size: 614666 SHA256: e2e39a8959f3f6a6fc5083ae57fea898ef55c0233c145693126dd4858f16e0f4 SHA1: b02a744ec496e47a19db5cbeeb27a910197266f6 MD5sum: ebee73fbb0ebf3f11f6da28bd778e2cb Description: Compare similar files with numeric fields Numdiff is a console application that can be used to compare putatively similar files line by line and field by field, ignoring small numeric differences or/and different numeric formats. It is similar diff or wdiff, but it is aware of floating point numbers including complex and multi-precision numbers. Numdiff is useful to compare text files containing numerical fields, when testing or doing quality control in scientific computing or in numerical analysis. Package: octave-biosig Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 69 Depends: neurodebian-popularity-contest, octave (>= 3.4.3-1~), libbiosig1, libc6 (>= 2.14), liboctave1 (>= 3.6.2) Homepage: http://biosig.sf.net/ Priority: extra Section: science Filename: pool/main/b/biosig4c++/octave-biosig_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 24108 SHA256: 7a0ed19b6340589e4949b1a46b9ca29f900bc65e484643bbead515f03919ad7a SHA1: ed4d50cbfab6a21313cb013ca991ab4651cf3912 MD5sum: 9eee30662063f2bd4bec8c59458b8f15 Description: Octave bindings for BioSig library This package provides Octave bindings for BioSig library. Primary goal -- I/O interface to variety of biomedical file formats, including but not limited to SCP-ECG(EN1064), HL7aECG (FDA-XML), GDF, EDF. Package: octave-nlopt Source: nlopt Version: 2.4.1+dfsg-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 84 Depends: neurodebian-popularity-contest, libnlopt0 (= 2.4.1+dfsg-1~nd13.04+1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), liboctave1 (>= 3.6.2), libstdc++6 (>= 4.1.1) Homepage: http://ab-initio.mit.edu/wiki/index.php/NLopt Priority: optional Section: math Filename: pool/main/n/nlopt/octave-nlopt_2.4.1+dfsg-1~nd13.04+1_amd64.deb Size: 31060 SHA256: 73a12c5e57dd4de7577d71cca41ff5d35fca9120c7cfd78aa710a3c0177ccb39 SHA1: fa62c818c24817c4d57ac9f92a60d6b2598c4e84 MD5sum: 3702507ddb3e6d7b90c5730807be767a Description: nonlinear optimization library -- GNU Octave package NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. Its features include: . * Callable from C, C++, Fortran, GNU Octave, Python, GNU Guile, GNU R. * A common interface for many different algorithms * Support for large-scale optimization. * Both global and local optimization algorithms. * Algorithms using function values only (derivative-free) and also algorithms exploiting user-supplied gradients. * Algorithms for unconstrained optimization, bound-constrained optimization, and general nonlinear inequality/equality constraints. . This package contains the module for the GNU Octave. Package: octave-psychtoolbox-3 Source: psychtoolbox-3 Version: 3.0.11.20140816.dfsg1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2843 Depends: neurodebian-popularity-contest, octave (>= 3.4.3-1~), freeglut3, libasound2 (>= 1.0.16), libc6 (>= 2.14), libdc1394-22, libfreenect0.1 (>= 1:0.1.1), libgl1-mesa-glx | libgl1, libglew1.9 (>= 1.9.0), libglib2.0-0 (>= 2.12.0), libglu1-mesa | libglu1, libgstreamer-plugins-base0.10-0 (>= 0.10.23), libgstreamer0.10-0 (>= 0.10.24), liboctave1 (>= 3.6.2), libopenal1 (>= 1:1.13), libpciaccess0 (>= 0.8.0+git20071002), libusb-1.0-0 (>= 2:1.0.9), libx11-6 (>= 2:1.2.99.901), libxfixes3, libxi6 (>= 2:1.2.99.4), libxrandr2 (>= 2:1.2.99.3), libxxf86vm1, psychtoolbox-3-common (= 3.0.11.20140816.dfsg1-1~nd13.04+1), psychtoolbox-3-lib (= 3.0.11.20140816.dfsg1-1~nd13.04+1) Recommends: octave-audio, octave-image, octave-optim, octave-signal, octave-statistics Provides: psychtoolbox, psychtoolbox-3 Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/octave-psychtoolbox-3_3.0.11.20140816.dfsg1-1~nd13.04+1_amd64.deb Size: 923722 SHA256: c3ca5d2477f2162217958e05bd5a1cbb79432471f05fc3bc6a7c8cc99651881f SHA1: 5709b48639e70815d1bcbaaf2a55a16c671f26da MD5sum: 745589b530dce4e9835130393c6f5913 Description: toolbox for vision research -- Octave bindings Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . See also http://www.psychtoolbox.org/UsingPsychtoolboxOnUbuntu for additional information about systems tune-up and initial configuration. . This package contains bindings for Octave. Package: opensesame Version: 0.27.4-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 26639 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-qt4, python-pygame (>= 1.8.1~), python-numpy (>= 1.3.0~), python-qscintilla2, gnome-icon-theme Recommends: python-serial (>= 2.3~), psychopy (>= 1.64.0), python-pyaudio (>= 0.2.4), python-imaging (>= 1.1.7), python-opengl (>= 3.0.1), expyriment (>= 0.5.2), ipython-qtconsole (>= 0.12), python-markdown Homepage: http://www.cogsci.nl/software/opensesame Priority: extra Section: science Filename: pool/main/o/opensesame/opensesame_0.27.4-2~nd13.04+1_all.deb Size: 25359352 SHA256: be473efbb1a3c74f86b5d05bd4d841ec3bee3c0e6e61451bd2aa3673834c9c22 SHA1: 1f1e9c48706fb0075bcdce01889f29457ab7efad MD5sum: db4fbffa3d4dc3eb61e2c40cc52fc9a4 Description: graphical experiment builder for the social sciences This graphical environment provides an easy to use, point-and-click interface for creating psychological experiments. In addition to a powerful sketchpad for creating visual stimuli, OpenSesame features a sampler and synthesizer for sound playback. For more complex tasks, OpenSesame supports Python scripting using the built-in editor with syntax highlighting. Package: openwalnut-modules Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 21945 Depends: neurodebian-popularity-contest, libbiosig1, libboost-filesystem1.49.0 (>= 1.49.0-1), libboost-regex1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-thread1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libnifti2, libopenscenegraph80, libopenwalnut1, libstdc++6 (>= 4.6) Homepage: http://www.openwalnut.org Priority: extra Section: science Filename: pool/main/o/openwalnut/openwalnut-modules_1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1_amd64.deb Size: 6547400 SHA256: 5e82c5f603f2bb3b87ec517a3f50c052a2361fead262ed2c4b547f19107e4972 SHA1: a16904c22f5046a838f0f11e95539314be033959 MD5sum: 0b3134a038ea540f7f2675325825d33e Description: Loaders, algorithms and visualization modules for OpenWalnut OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the currently available modules for OpenWalnut. Package: openwalnut-qt4 Source: openwalnut Version: 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2167 Depends: neurodebian-popularity-contest, libboost-filesystem1.49.0 (>= 1.49.0-1), libboost-program-options1.49.0 (>= 1.49.0-1), libboost-regex1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-thread1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libopenscenegraph80, libopenwalnut1, libqt4-opengl (>= 4:4.6.0), libqtcore4 (>= 4:4.7.0~beta1), libqtgui4 (>= 4:4.8.0), libqtwebkit4, libstdc++6 (>= 4.6), libx11-6 Recommends: openwalnut-modules (= 1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1) Homepage: http://www.openwalnut.org Priority: extra Section: science Filename: pool/main/o/openwalnut/openwalnut-qt4_1.4.0~rc1+hg3a3147463ee2-1~nd13.04+1_amd64.deb Size: 946082 SHA256: 10a6df82accc3fe1d9c7fd2016aae241eb423a4d01015d4d5b326bc0f7cd5f1e SHA1: e5cd017aeb0dd08e8479f39c659553fafa9d7e01 MD5sum: dc4d6f5d5dce6b79706af19538969d87 Description: Qt based user interface for OpenWalnut OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the QT4 GUI for OpenWalnut. Package: packaging-tutorial Version: 0.8~nd0+nd13.04+1 Architecture: all Maintainer: Lucas Nussbaum Installed-Size: 1550 Priority: extra Section: doc Filename: pool/main/p/packaging-tutorial/packaging-tutorial_0.8~nd0+nd13.04+1_all.deb Size: 1488406 SHA256: 2080837f62cdfe9c3cdd6abbe134a1672da2a73335dd213fc8c80732244c40a9 SHA1: 15eaae4fe59ba4f53545db6406d8f51e61692eea MD5sum: 27e78cb1c4edc8953cf73e9a71350c36 Description: introduction to Debian packaging This tutorial is an introduction to Debian packaging. It teaches prospective developers how to modify existing packages, how to create their own packages, and how to interact with the Debian community. In addition to the main tutorial, it includes three practical sessions on modifying the 'grep' package, and packaging the 'gnujump' game and a Java library. Package: psychopy Version: 1.79.00+git16-g30c9343.dfsg-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 12186 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-pyglet | python-pygame, python-opengl, python-numpy, python-scipy, python-matplotlib, python-lxml, python-configobj Recommends: python-wxgtk2.8, python-pyglet, python-pygame, python-openpyxl, python-imaging, python-serial, python-pyo, libavbin0, libxxf86vm1, ipython Suggests: python-iolabs, python-pyxid Homepage: http://www.psychopy.org Priority: optional Section: science Filename: pool/main/p/psychopy/psychopy_1.79.00+git16-g30c9343.dfsg-1~nd13.04+1_all.deb Size: 8109658 SHA256: d348a51d0d94f052bb8300a1ca7526ccd90e923b93b02cf856b44d36c0d60919 SHA1: 72b7fa77df11a89b72ad018f4960184d7a402fba MD5sum: ffd2d612a22696e4f3de3bf70383f721 Description: environment for creating psychology stimuli in Python PsychoPy provides an environment for creating psychology stimuli using Python scripting language. It combines the graphical strengths of OpenGL with easy Python syntax to give psychophysics a free and simple stimulus presentation and control package. . The goal is to provide, for the busy scientist, tools to control timing and windowing and a simple set of pre-packaged stimuli and methods. PsychoPy features . - IDE GUI for coding in a powerful scripting language (Python) - Builder GUI for rapid development of stimulation sequences - Use of hardware-accelerated graphics (OpenGL) - Integration with Spectrascan PR650 for easy monitor calibration - Simple routines for staircase and constant stimuli experimental methods as well as curve-fitting and bootstrapping - Simple (or complex) GUIs via wxPython - Easy interfaces to joysticks, mice, sound cards etc. via PyGame - Video playback (MPG, DivX, AVI, QuickTime, etc.) as stimuli Python-Version: 2.7 Package: psychtoolbox-3-common Source: psychtoolbox-3 Version: 3.0.11.20140816.dfsg1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 58476 Depends: neurodebian-popularity-contest Recommends: subversion Suggests: gnuplot Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-common_3.0.11.20140816.dfsg1-1~nd13.04+1_all.deb Size: 24812342 SHA256: 1ff10b65645327e6d169c49bee8164895503a4109ee6a3600e766ab7cbb89604 SHA1: 8d355ffcbc8c536ca000449c689edaf45ef0814d MD5sum: dcc7ad2b0cf90a7646c5702651d16818 Description: toolbox for vision research -- arch/interpreter independent part Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains architecture independent files (such as .m scripts) Package: psychtoolbox-3-dbg Source: psychtoolbox-3 Version: 3.0.11.20140816.dfsg1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2727 Depends: neurodebian-popularity-contest, octave-psychtoolbox-3 (= 3.0.11.20140816.dfsg1-1~nd13.04+1) Homepage: http://psychtoolbox.org Priority: extra Section: debug Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-dbg_3.0.11.20140816.dfsg1-1~nd13.04+1_amd64.deb Size: 871418 SHA256: fe3241f34d961705cb1d0f0f13eb595bbec6c98c950b0cb6795344cf8d3a8c91 SHA1: 315c4563492dee36abb3ccc9ae34e2ba248d3f7d MD5sum: fc98b328b5b0edd1032af28629984603 Description: toolbox for vision research -- debug symbols for binaries Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . To ease debugging and troubleshooting this package contains debug symbols for Octave bindings and other binaries. Package: psychtoolbox-3-lib Source: psychtoolbox-3 Version: 3.0.11.20140816.dfsg1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 157 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libfontconfig1 (>= 2.9.0), libfreetype6 (>= 2.2.1), libgcc1 (>= 1:4.1.1), libgl1-mesa-glx | libgl1, libglu1-mesa | libglu1, libstdc++6 (>= 4.6) Recommends: gstreamer0.10-plugins-base, gstreamer0.10-plugins-good, gstreamer0.10-plugins-bad, gstreamer0.10-plugins-ugly Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-lib_3.0.11.20140816.dfsg1-1~nd13.04+1_amd64.deb Size: 66316 SHA256: 2a8a84a0ee02196717285ff464808f4155af98019140cc0065a49cf355f92b22 SHA1: 4a9c094f71d10082b50ed333554c3482c09986aa MD5sum: 34818ddf1b084bb25b8a2cae7bc40dc6 Description: toolbox for vision research -- arch-specific parts Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains additional binaries (tools/dynamic libraries) used by both Octave and Matlab frontends. Package: python-biosig Source: biosig4c++ Version: 1.4.1-1~nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 206 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python-support (>= 0.90.0), libbiosig1, libc6 (>= 2.14), libcholmod1.7.1 (>= 1:3.4.0), libgcc1 (>= 1:4.1.1), libpython2.7 (>= 2.7), libstdc++6 (>= 4.1.1), zlib1g (>= 1:1.1.4) Homepage: http://biosig.sf.net/ Priority: extra Section: python Filename: pool/main/b/biosig4c++/python-biosig_1.4.1-1~nd12.10+1+nd13.04+1_amd64.deb Size: 55788 SHA256: d10b6a9bc04d70f91e0082ad94424b67b4da0e4f2634a58b52d3c794a75cd12f SHA1: c2ffb1d151744381f09e87221926752786176fce MD5sum: 95bee2d6a93715defd6e0c0687a81dd2 Description: Python bindings for BioSig library This package provides Python bindings for BioSig library. Primary goal -- I/O interface to variety of biomedical file formats, including but not limited to SCP-ECG(EN1064), HL7aECG (FDA-XML), GDF, EDF. Package: python-brian Source: brian Version: 1.4.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2336 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-brian-lib (>= 1.4.1-1~nd13.04+1), python-matplotlib (>= 0.90.1), python-numpy (>= 1.3.0), python-scipy (>= 0.7.0) Recommends: python-sympy Suggests: python-brian-doc, python-nose, python-cherrypy Homepage: http://www.briansimulator.org/ Priority: extra Section: python Filename: pool/main/b/brian/python-brian_1.4.1-1~nd13.04+1_all.deb Size: 549182 SHA256: 9eced6619fb84aea48b5a3fcbc2866e03897ae230c42de1363a01e9dd5b54f91 SHA1: 3ca4a641e5ded2df230142d5a767dacb02e2c1fd MD5sum: 1e3f0dd840e5c40b39c063a9ec88305d Description: simulator for spiking neural networks Brian is a clock-driven simulator for spiking neural networks. It is designed with an emphasis on flexibility and extensibility, for rapid development and refinement of neural models. Neuron models are specified by sets of user-specified differential equations, threshold conditions and reset conditions (given as strings). The focus is primarily on networks of single compartment neuron models (e.g. leaky integrate-and-fire or Hodgkin-Huxley type neurons). Features include: - a system for specifying quantities with physical dimensions - exact numerical integration for linear differential equations - Euler, Runge-Kutta and exponential Euler integration for nonlinear differential equations - synaptic connections with delays - short-term and long-term plasticity (spike-timing dependent plasticity) - a library of standard model components, including integrate-and-fire equations, synapses and ionic currents - a toolbox for automatically fitting spiking neuron models to electrophysiological recordings Package: python-brian-doc Source: brian Version: 1.4.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6811 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-brian Homepage: http://www.briansimulator.org/ Priority: extra Section: doc Filename: pool/main/b/brian/python-brian-doc_1.4.1-1~nd13.04+1_all.deb Size: 2247196 SHA256: d155efe0ac801294667b2a44eb58bcb3b0298e73ff97556f8829de8710828f81 SHA1: c247d3f619f28dacd1fe308e61c674ee3556c2f1 MD5sum: bc1ad205f7e25c67460319c0ce2c290c Description: simulator for spiking neural networks - documentation Brian is a clock-driven simulator for spiking neural networks. . This package provides user's manual (in HTML format), examples and demos. Package: python-brian-lib Source: brian Version: 1.4.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 141 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python-support (>= 0.90.0), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0) Homepage: http://www.briansimulator.org/ Priority: extra Section: python Filename: pool/main/b/brian/python-brian-lib_1.4.1-1~nd13.04+1_amd64.deb Size: 54142 SHA256: a629ab49125786930a69fcece027e2b223f372b578ff9429c15ab1a4ab7d3d32 SHA1: 165590b96a5e79b3a68bb1ab2a4e21a550f6011a MD5sum: 42fe15ce978cd33a39480f3cfd603d4b Description: simulator for spiking neural networks -- extensions Brian is a clock-driven simulator for spiking neural networks. . This package provides Python binary extensions. Package: python-dicom Source: pydicom Version: 0.9.8-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1814 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-numpy, python-imaging Suggests: python-matplotlib Homepage: http://code.google.com/p/pydicom/ Priority: optional Section: python Filename: pool/main/p/pydicom/python-dicom_0.9.8-1~nd13.04+1_all.deb Size: 422952 SHA256: e0bb4d271da30d345a5c89117eaebdf7d1c82f408c4f986929b6d5e604973d75 SHA1: 6ee33331ca955f59b15399c0d87a87c477f6fa2f MD5sum: 30b896304847513cf9c2de454d7e1bf1 Description: DICOM medical file reading and writing pydicom is a pure Python module for parsing DICOM files. DICOM is a standard (http://medical.nema.org) for communicating medical images and related information such as reports and radiotherapy objects. . pydicom makes it easy to read DICOM files into natural pythonic structures for easy manipulation. Modified datasets can be written again to DICOM format files. Package: python-dipy Source: dipy Version: 0.7.1-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2952 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-dipy-lib (>= 0.7.1-2~nd13.04+1) Recommends: python-matplotlib, python-vtk, python-nose, python-nibabel, python-tables Suggests: ipython Provides: python2.7-dipy Homepage: http://nipy.org/dipy Priority: optional Section: python Filename: pool/main/d/dipy/python-dipy_0.7.1-2~nd13.04+1_all.deb Size: 1884922 SHA256: 4aaebc71adf63de47fed59e1a026888898be04eec6e6fd2a930398bf96e03d5f SHA1: 42b55691b4fe067ee5553c5f70bafa2d109340ce MD5sum: c7bebc892e2ead6dba29ce64fb6ecf0e Description: toolbox for analysis of MR diffusion imaging data Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. It features: - Reconstruction algorithms, e.g. GQI, DTI - Tractography generation algorithms, e.g. EuDX - Intelligent downsampling of tracks - Ultra fast tractography clustering - Resampling datasets with anisotropic voxels to isotropic - Visualizing multiple brains simultaneously - Finding track correspondence between different brains - Warping tractographies into another space, e.g. MNI space - Reading many different file formats, e.g. Trackvis or NIfTI - Dealing with huge tractographies without memory restrictions - Playing with datasets interactively without storing Python-Version: 2.7 Package: python-dipy-doc Source: dipy Version: 0.7.1-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9459 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-dipy Homepage: http://nipy.org/dipy Priority: optional Section: doc Filename: pool/main/d/dipy/python-dipy-doc_0.7.1-2~nd13.04+1_all.deb Size: 7616954 SHA256: 4bbc31a702c0e2e1ccdb7b98ddbf7bf403682f60ee87ae723d73eb30fb53bcc5 SHA1: 215be000a820571cbec1439ebbfc84a3db3f87d0 MD5sum: 4f56a88dc0de1f99a2374f9f14e39772 Description: toolbox for analysis of MR diffusion imaging data -- documentation Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. . This package provides the documentation in HTML format. Package: python-dipy-lib Source: dipy Version: 0.7.1-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 963 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7), python-support (>= 0.90.0), libc6 (>= 2.14) Provides: python2.7-dipy-lib Homepage: http://nipy.org/dipy Priority: optional Section: python Filename: pool/main/d/dipy/python-dipy-lib_0.7.1-2~nd13.04+1_amd64.deb Size: 380166 SHA256: df5dba05909de1808f4cf056c588077cdf41236da00ae41a022979b31ad41b7f SHA1: b389d28fd37435e46de29429fd08c59f0166a4ce MD5sum: 04eec18affa3bd177fc5758e4b4b2242 Description: toolbox for analysis of MR diffusion imaging data -- extensions Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. . This package provides architecture-dependent builds of the extensions. Python-Version: 2.7 Package: python-expyriment Version: 0.7.0+git34-g55a4e7e-3~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2413 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-support (>= 0.90.0), python-pygame (>= 1.9.1~), python-opengl (>= 3.0.0), ttf-freefont, libjs-jquery, libjs-underscore Recommends: python-serial (>= 2.5~), python-numpy (>= 1.3.0~) Suggests: python-parallel (>= 0.2), python-pyxid Homepage: http://www.expyriment.org Priority: optional Section: science Filename: pool/main/p/python-expyriment/python-expyriment_0.7.0+git34-g55a4e7e-3~nd13.04+1_all.deb Size: 838738 SHA256: a391537a771e0c1d78b68951a52127ee2131befd9cf76913638a01e4f62c567c SHA1: 03ac5a2e9e0aa1536f355e53f5d8404a36a575db MD5sum: e22aedabcfe6986fa6216dba50e18443 Description: Python library for cognitive and neuroscientific experiments Expyriment is a light-weight Python library for designing and conducting timing-critical behavioural and neuroimaging experiments. The major goal is to provide a well-structured Python library for a script-based experiment development with a high priority on the readability of the resulting programme code. Due to the availability of an Android runtime environment, Expyriment is also suitable for the development of experiments running on tablet PCs or smart-phones. Package: python-joblib Source: joblib Version: 0.8.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 264 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-numpy, python-nose, python-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python-joblib_0.8.3-1~nd13.04+1_all.deb Size: 75586 SHA256: fb3e999102437355a5bd35c20ef455f7378dabada4684f195dd665207a0a574e SHA1: f9030cbd6d99f67a6cc8fe48550de0926ed6a130 MD5sum: 87f43c6377f52b17724b96b1000f2308 Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: . - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. . This package contains the Python 2 version. Package: python-mdp Source: mdp Version: 3.3+git6-g7bbd889-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1495 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Recommends: python-scipy, python-libsvm, python-joblib, python-scikits-learn | python-sklearn, python-pp Suggests: python-py, shogun-python-modular Enhances: python-mvpa Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python-mdp_3.3+git6-g7bbd889-1~nd12.10+1+nd13.04+1_all.deb Size: 478658 SHA256: f64b49dd6826c89a25593bc9a05d154599fed318b5bb9a3c8e99c6ce9ba6dd5a SHA1: 1d63f0f452c4d60af96494263e7f75b724ee7a56 MD5sum: 4d9fb528cbf2c338a7562b20dcfd8a4d Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 2. Package: python-mne Version: 0.7.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6208 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-sklearn, python-matplotlib, python-joblib (>= 0.4.5), xvfb, xauth, libgl1-mesa-dri, help2man Recommends: python-nose, mayavi2 Suggests: python-dap, ipython Provides: python2.7-mne Homepage: http://martinos.org/mne Priority: optional Section: python Filename: pool/main/p/python-mne/python-mne_0.7.3-1~nd13.04+1_all.deb Size: 4053356 SHA256: 1859e5d1d072111c55949e4c5189ad5675bb318c9d7e31d82840ac22a531094b SHA1: 62a3641be07443909cb2a261edc72d151b743dfe MD5sum: 6d95517850ff369c73ce19cda7513b18 Description: Python modules for MEG and EEG data analysis This package is designed for sensor- and source-space analysis of MEG and EEG data, including frequency-domain and time-frequency analyses and non-parametric statistics. Package: python-mpi4py Source: mpi4py Version: 1.3.1+hg20131106-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1350 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libopenmpi1.3, python (>= 2.7.1-0ubuntu2), python (<< 2.8), mpi-default-bin Suggests: python-numpy Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: python Filename: pool/main/m/mpi4py/python-mpi4py_1.3.1+hg20131106-1~nd13.04+1_amd64.deb Size: 447260 SHA256: 96ad7a03b028424caba047923f2e5b85968c8c3298a398a2e144a35f69d381a6 SHA1: e1fa00d0b7c2a4c1e5af2e053ab59f3d3d2a3376 MD5sum: 3ebcaa6c26197760fbce797a2757d696 Description: bindings of the Message Passing Interface (MPI) standard MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). Package: python-mpi4py-dbg Source: mpi4py Version: 1.3.1+hg20131106-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5345 Depends: neurodebian-popularity-contest, python-mpi4py (= 1.3.1+hg20131106-1~nd13.04+1) Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: debug Filename: pool/main/m/mpi4py/python-mpi4py-dbg_1.3.1+hg20131106-1~nd13.04+1_amd64.deb Size: 1275550 SHA256: 9c87808c0960e31c1028d2d30f71e32f80ec8bdde1cf81b145226ae71c8dc1f6 SHA1: 606e73909a153310e8646c79b3a11baaf64a7180 MD5sum: 991e3184ed05471260d6e034c8386e65 Description: bindings of the MPI standard -- debug symbols MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). . This package provides debug symbols. Package: python-mpi4py-doc Source: mpi4py Version: 1.3.1+hg20131106-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 256 Depends: neurodebian-popularity-contest, libjs-sphinxdoc (>= 1.0) Suggests: python-mpi4py Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: doc Filename: pool/main/m/mpi4py/python-mpi4py-doc_1.3.1+hg20131106-1~nd13.04+1_all.deb Size: 73120 SHA256: 0d1ac85177ba65bb8362f9af8645361a0d352ae7b56575cd5be8c81f2b98b1f1 SHA1: b966da7d5a6d6e6b1c991dbed503f58be1e14e41 MD5sum: a90f44ff9721a35d7f3f388834bbb808 Description: bindings of the MPI standard -- documentation MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). . This package provides HTML rendering of the user's manual. Package: python-mvpa2 Source: pymvpa2 Version: 2.3.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6541 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7.1-0ubuntu2), python-numpy, python-mvpa2-lib (>= 2.3.1-1~nd13.04+1) Recommends: python-h5py, python-lxml, python-matplotlib, python-mdp, python-nibabel, python-nipy, python-psutil, python-psyco, python-pywt, python-reportlab, python-scipy, python-sklearn, shogun-python-modular, liblapack-dev, python-pprocess Suggests: fslview, fsl, python-mvpa2-doc, python-nose, python-openopt, python-rpy2 Provides: python2.7-mvpa2 Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa2/python-mvpa2_2.3.1-1~nd13.04+1_all.deb Size: 3907266 SHA256: 546bb274975957f8630eaa073c8d2ff841677f8680cbc02b0b7d67c3da89650e SHA1: bb69e09e4a6817cd881f0c6e1ce29c4549aa5138 MD5sum: 0898824edc81730df022921373c0a29c Description: multivariate pattern analysis with Python v. 2 PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. . This is a package of PyMVPA v.2. Previously released stable version is provided by the python-mvpa package. Python-Version: 2.7 Package: python-mvpa2-doc Source: pymvpa2 Version: 2.3.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 27414 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-mvpa2, python-mvpa2-tutorialdata, ipython-notebook Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa2/python-mvpa2-doc_2.3.1-1~nd13.04+1_all.deb Size: 6495174 SHA256: 095ad31ca4d2395d9e71d7b5c70900b88c36bfbcbbefe58068b382d0959abc74 SHA1: 24bcdb494f18d5374da0ca7f67cc85e2c4d6f14a MD5sum: 82c36b17f6575115a280988695cbeb1a Description: documentation and examples for PyMVPA v. 2 This is an add-on package for the PyMVPA framework. It provides a HTML documentation (tutorial, FAQ etc.), and example scripts. In addition the PyMVPA tutorial is also provided as IPython notebooks. Package: python-mvpa2-lib Source: pymvpa2 Version: 2.3.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 114 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), libsvm3, python (<< 2.8), python (>= 2.7), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9 Provides: python2.7-mvpa2-lib Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa2/python-mvpa2-lib_2.3.1-1~nd13.04+1_amd64.deb Size: 51598 SHA256: 261e15838c6f337bf79f941135b6cc20c0c7f49effd1798aa9a64909aa1f64e8 SHA1: 708a1572cabbfdf8439d1cc7cbeab81dc8134a55 MD5sum: 69cc6e7f327f6a7ae3920167d943786e Description: low-level implementations and bindings for PyMVPA v. 2 This is an add-on package for the PyMVPA framework. It provides a low-level implementation of an SMLR classifier and custom Python bindings for the LIBSVM library. . This is a package of a development snapshot. The latest released version is provided by the python-mvpa-lib package. Python-Version: 2.7 Package: python-neo Source: neo Version: 0.3.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2913 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy (>= 1:1.3~), python-quantities (>= 0.9.0~) Recommends: python-scipy (>= 0.8~), python-tables (>= 2.2~), libjs-jquery, libjs-underscore Suggests: python-nose Homepage: http://neuralensemble.org/trac/neo Priority: extra Section: python Filename: pool/main/n/neo/python-neo_0.3.3-1~nd13.04+1_all.deb Size: 1503960 SHA256: a89c10210269720f42fa1d4986f09ecaa13fc4ea78f1d75fc5ed7ddc6352827f SHA1: c883688f279ec7aaac4c0cc5ac8d1ff27f183533 MD5sum: 015d0c523b10e217eb75e781759c8a80 Description: Python IO library for electrophysiological data formats NEO stands for Neural Ensemble Objects and is a project to provide common classes and concepts for dealing with electro-physiological (in vivo and/or simulated) data to facilitate collaborative software/algorithm development. In particular Neo provides: a set a classes for data representation with precise definitions, an IO module with a simple API, documentation, and a set of examples. . NEO offers support for reading data from numerous proprietary file formats (e.g. Spike2, Plexon, AlphaOmega, BlackRock, Axon), read/write support for various open formats (e.g. KlustaKwik, Elan, WinEdr, WinWcp, PyNN), as well as support common file formats, such as HDF5 with Neo-structured content (NeoHDF5, NeoMatlab). . Neo's IO facilities can be seen as a pure-Python and open-source Neuroshare replacement. Package: python-neurosynth Source: neurosynth Version: 0.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 83 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-nibabel, python-ply Recommends: python-nose, fsl-mni152-templates Suggests: python-testkraut Homepage: http://neurosynth.org Priority: extra Section: python Filename: pool/main/n/neurosynth/python-neurosynth_0.3-1~nd13.04+1_all.deb Size: 32522 SHA256: 6f15ee7476bbfde85706a4c2f3d03cda6040abdbd999b3894242c38a6b5e5e15 SHA1: 6d50b9fdc6cc95d65b5a36dff938dc20a53f85a6 MD5sum: 490b03520a88f2609b103c8f9e81d538 Description: large-scale synthesis of functional neuroimaging data NeuroSynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. This Python module at the moment provides functionality for processing the database of collected terms and spatial coordinates to generate associated spatial statistical maps. Package: python-nibabel Source: nibabel Version: 1.3.0-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4152 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-dicom, python-fuse Suggests: python-nibabel-doc Provides: python2.7-nibabel Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: python Filename: pool/main/n/nibabel/python-nibabel_1.3.0-1~nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 1816392 SHA256: 5471327f1b831976c7f5fd2e640cea5ad293f6fe3d5dc5c90cad27576dd31c7b SHA1: 24a7b6779e812cb2e0141392940f64f5f9654eab MD5sum: c0d6269ba81e7cde8a02b4ecf5d09a9a Description: Python bindings to various neuroimaging data formats NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package also provides a commandline tools: . - dicomfs - FUSE filesystem on top of a directory with DICOMs - nib-ls - 'ls' for neuroimaging files - parrec2nii - for conversion of PAR/REC to NIfTI images Python-Version: 2.7 Package: python-nibabel-doc Source: nibabel Version: 1.3.0-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2446 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: doc Filename: pool/main/n/nibabel/python-nibabel-doc_1.3.0-1~nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 441852 SHA256: c393586f5d860ad1367c994624f64e56f5142eb810b1c7eb398b3a4514ba1e59 SHA1: d709ae60593669a10a6ba1bce7e3597b4ec0cdf9 MD5sum: debae32aab1b2c3078bcd33a7e0a3dbd Description: documentation for NiBabel NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package provides the documentation in HTML format. Package: python-nipype Source: nipype Version: 0.9.2-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3521 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-scipy, python-simplejson, python-traits (>= 4.0) | python-traits4, python-nibabel (>= 1.0.0~), python-networkx (>= 1.3), python-cfflib Recommends: ipython, python-nose, graphviz Suggests: fsl, afni, python-nipy, slicer, matlab-spm8, python-pyxnat Provides: python2.7-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: python Filename: pool/main/n/nipype/python-nipype_0.9.2-1~nd13.04+1_all.deb Size: 768506 SHA256: 6031eca5799cfec9f8d0037cfd1424c66967f861b44c89e1f3b559f8924171a0 SHA1: 5cd1b910d0a1997524c2ed2e26a6e86439dd5ff9 MD5sum: bde560f80b6cc7937bb7aaf91e010225 Description: Neuroimaging data analysis pipelines in Python Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). Package: python-nipype-doc Source: nipype Version: 0.9.2-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16563 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: doc Filename: pool/main/n/nipype/python-nipype-doc_0.9.2-1~nd13.04+1_all.deb Size: 7621042 SHA256: 18db5684e0554436f54dedafb4d3d73295c326ebfc9ac827fd2cb49cce9ff085 SHA1: ed3323cfa8556d3310f3077224f8075a34005955 MD5sum: 5e2862423bb79616ae1dad000bee10c7 Description: Neuroimaging data analysis pipelines in Python -- documentation Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). . This package contains Nipype examples and documentation in various formats. Package: python-nitime Source: nitime Version: 0.5-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9348 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-matplotlib, python-nose, python-nibabel, python-networkx Homepage: http://nipy.org/nitime Priority: extra Section: python Filename: pool/main/n/nitime/python-nitime_0.5-1~nd13.04+1_all.deb Size: 3927898 SHA256: 99d1ee2b3f50023989bfbed655b03410d2df4a9b2c37c6831ce5107555c760f4 SHA1: b0ada9f6dfcdaf29008f8233f7894e81f012019d MD5sum: 3472f022b7cb83e5e71251ee60eb7610 Description: timeseries analysis for neuroscience data (nitime) Nitime is a Python module for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code. Package: python-nitime-doc Source: nitime Version: 0.5-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7693 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nitime Homepage: http://nipy.org/nitime Priority: extra Section: doc Filename: pool/main/n/nitime/python-nitime-doc_0.5-1~nd13.04+1_all.deb Size: 6059462 SHA256: cc4bfb0d86027eb98312eb622a6e6834dea2709427e778939db7870731af7ab1 SHA1: 992801b810fcfdb3cf135db1b94e5647b5361e89 MD5sum: c34b07b82384ae963cf656a8e09cea8c Description: timeseries analysis for neuroscience data (nitime) -- documentation Nitime is a Python module for time-series analysis of data from neuroscience experiments. . This package provides the documentation in HTML format. Package: python-nlopt Source: nlopt Version: 2.4.1+dfsg-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 264 Depends: neurodebian-popularity-contest, libnlopt0 (= 2.4.1+dfsg-1~nd13.04+1), libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Provides: python2.7-nlopt Homepage: http://ab-initio.mit.edu/wiki/index.php/NLopt Priority: optional Section: python Filename: pool/main/n/nlopt/python-nlopt_2.4.1+dfsg-1~nd13.04+1_amd64.deb Size: 88346 SHA256: f44fd2efd5f81758b9e9446cfbe4296fcd501e667dd2435228a9127090b383dd SHA1: 8052ebf94c31f9e51dbf19bdbc7345aea30101df MD5sum: 082a546d785ae9371b8ec43dde128c8c Description: nonlinear optimization library -- Python bindings NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. Its features include: . * Callable from C, C++, Fortran, GNU Octave, Python, GNU Guile, GNU R. * A common interface for many different algorithms * Support for large-scale optimization. * Both global and local optimization algorithms. * Algorithms using function values only (derivative-free) and also algorithms exploiting user-supplied gradients. * Algorithms for unconstrained optimization, bound-constrained optimization, and general nonlinear inequality/equality constraints. . This package contains the Python bindings. Package: python-openpyxl Source: openpyxl Version: 1.7.0+ds1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 452 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0) Recommends: python-nose, python-pil, python-imaging Homepage: http://bitbucket.org/ericgazoni/openpyxl/ Priority: optional Section: python Filename: pool/main/o/openpyxl/python-openpyxl_1.7.0+ds1-1~nd13.04+1_all.deb Size: 91950 SHA256: 85b2b60b87f158f379a654ac99c15239a6095024efc9eb2b97ba2e2e4052c4e5 SHA1: d26ab1a664555bb012e58aa4fc3ad4ca3ac9b876 MD5sum: b88ed9a7467757e920c2ede8e5826755 Description: module to read/write OpenXML xlsx/xlsm files Openpyxl is a pure Python module to read/write Excel 2007 (OpenXML) xlsx/xlsm files. Package: python-pandas Source: pandas Version: 0.14.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8987 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-dateutil, python-tz, python-numpy (>= 1:1.6~), python-pandas-lib (>= 0.14.1-1~nd13.04+1), python-six Recommends: python-scipy, python-matplotlib, python-tables, python-numexpr, python-xlrd, python-statsmodels, python-openpyxl, python-xlwt, python-bs4, python-html5lib Suggests: python-pandas-doc Provides: python2.7-pandas Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python-pandas_0.14.1-1~nd13.04+1_all.deb Size: 1666616 SHA256: 415e45189af6824076fe30b7dfacb9fdaa34c9fa1e24ab4849f420a263944667 SHA1: 4aaf310205af86773927a404327c5e669b1e8e78 MD5sum: f6c65440c7a279841f070b4e8c36ecfa Description: data structures for "relational" or "labeled" data pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the Python 2 version. Package: python-pandas-lib Source: pandas Version: 0.14.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5006 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7), python (<< 2.8) Provides: python2.7-pandas-lib Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python-pandas-lib_0.14.1-1~nd13.04+1_amd64.deb Size: 1865482 SHA256: 31afccb0d49a3d7f6fb3616d9d644cac7edd7f3cec9cfbeec52dd52562ed9854 SHA1: 725c1b73ee006a85b388d8c56dab82d0c67120b3 MD5sum: 5e3972f18c885845f795d937aa9daee9 Description: low-level implementations and bindings for pandas This is an add-on package for python-pandas providing architecture-dependent extensions. . This package contains the Python 2 version. Python-Version: 2.7 Package: python-patsy Source: patsy Version: 0.3.0-3~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 725 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy Recommends: python-pandas, python-openpyxl Suggests: python-patsy-doc Homepage: http://github.com/pydata/patsy Priority: optional Section: python Filename: pool/main/p/patsy/python-patsy_0.3.0-3~nd13.04+1_all.deb Size: 215588 SHA256: 4416ecd1d0516c35b7ec792b2bab8851e2860d30f14bda2f928c98c92537d8c3 SHA1: 4293cf540754e8158e27eeca8f02af177d85fc99 MD5sum: 46d488174bd34884ae8e01d50ead227e Description: statistical models in Python using symbolic formulas patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. . This package contains the Python 2 version. Package: python-patsy-doc Source: patsy Version: 0.3.0-3~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1243 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-patsy Homepage: http://github.com/pydata/patsy Priority: optional Section: doc Filename: pool/main/p/patsy/python-patsy-doc_0.3.0-3~nd13.04+1_all.deb Size: 551348 SHA256: b05b6ab08afc6ea3061d54d64ad602d8b7ffaa38677c0453bd40c7337f0ca3cc SHA1: 8eb377439cb246d668408af96cd28c9bdf2d7e0f MD5sum: 818327a07662765b36135f04f5cf41ae Description: documentation and examples for patsy This package contains documentation and example scripts for python-patsy. Package: python-pprocess Source: pprocess Version: 0.5-1+nd0~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 716 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.boddie.org.uk/python/pprocess.html Priority: optional Section: python Filename: pool/main/p/pprocess/python-pprocess_0.5-1+nd0~nd13.04+1_all.deb Size: 108522 SHA256: 5c2afaaea25f2e23d0c8b715a21196da047034de4e26227bd3e42a6b5f30d7aa SHA1: a10d6cc71e421d327f2a3b83e719bc67cc3630a7 MD5sum: 550613922b0b145cd729e657a220a429 Description: elementary parallel programming for Python The pprocess module provides elementary support for parallel programming in Python using a fork-based process creation model in conjunction with a channel-based communications model implemented using socketpair and poll. On systems with multiple CPUs or multicore CPUs, processes should take advantage of as many CPUs or cores as the operating system permits. Python-Version: 2.7 Package: python-pyepl Source: pyepl Version: 1.1.0+git12-g365f8e3-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1386 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-pyepl-common (= 1.1.0+git12-g365f8e3-2~nd13.04+1), python-numpy, python-imaging, python-pygame, python-pyode, python-opengl, ttf-dejavu, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libode1, libsamplerate0 (>= 0.1.7), libsndfile1 (>= 1.0.20), libstdc++6 (>= 4.4.0) Conflicts: python2.3-pyepl, python2.4-pyepl Replaces: python2.3-pyepl, python2.4-pyepl Provides: python2.7-pyepl Homepage: http://pyepl.sourceforge.net/ Priority: optional Section: python Filename: pool/main/p/pyepl/python-pyepl_1.1.0+git12-g365f8e3-2~nd13.04+1_amd64.deb Size: 381762 SHA256: 0a477f7adade4e35eaf954e44b4e0890bfbd2e63c95d18bf6aad336f4c8a9c64 SHA1: f158faa6c4c4af6c74e22e1624a0c0223b9b6823 MD5sum: 8c4168026575a844a42665531a04d3e3 Description: module for coding psychology experiments in Python PyEPL is a stimuli delivery and response registration toolkit to be used for generating psychology (as well as neuroscience, marketing research, and other) experiments. . It provides - presentation: both visual and auditory stimuli - responses registration: both manual (keyboard/joystick) and sound (microphone) time-stamped - sync-pulsing: synchronizing your behavioral task with external acquisition hardware - flexibility of encoding various experiments due to the use of Python as a description language - fast execution of critical points due to the calls to linked compiled libraries . This toolbox is here to be an alternative for a widely used commercial product E'(E-Prime) . This package provides PyEPL for supported versions of Python. Package: python-pyepl-common Source: pyepl Version: 1.1.0+git12-g365f8e3-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 813 Depends: neurodebian-popularity-contest, python Homepage: http://pyepl.sourceforge.net/ Priority: optional Section: python Filename: pool/main/p/pyepl/python-pyepl-common_1.1.0+git12-g365f8e3-2~nd13.04+1_all.deb Size: 818248 SHA256: db03e0e6da1604340b0e261b32b5fbfeb29c5ce61c377a0143c68970b8c84527 SHA1: 66261c89106edb13ad1415cfdc8f980ec0b0b383 MD5sum: 634c2710263e8349bd60a73fd742d18d Description: module for coding psychology experiments in Python PyEPL is a stimuli delivery and response registration toolkit to be used for generating psychology (as well as neuroscience, marketing research, and other) experiments. . It provides - presentation: both visual and auditory stimuli - responses registration: both manual (keyboard/joystick) and sound (microphone) time-stamped - sync-pulsing: synchronizing your behavioral task with external acquisition hardware - flexibility of encoding various experiments due to the use of Python as a description language - fast execution of critical points due to the calls to linked compiled libraries . This toolbox is here to be an alternative for a widely used commercial product E'(E-Prime) . This package provides common files such as images. Package: python-pynn Source: pynn Version: 0.7.5-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 763 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Recommends: python-jinja2, python-cheetah Suggests: python-neuron, python-brian, python-csa Homepage: http://neuralensemble.org/trac/PyNN Priority: extra Section: python Filename: pool/main/p/pynn/python-pynn_0.7.5-1~nd12.10+1+nd13.04+1_all.deb Size: 175824 SHA256: 8739a9484b7006b204e2cd7d530501ee969178ae5f0e291ef1d7243a6a5cfa6b SHA1: 6a89717511066991e428fc8e7efec413b51d4008 MD5sum: c6787a9174e58de883cd75f9682891f7 Description: simulator-independent specification of neuronal network models PyNN allows for coding a model once and run it without modification on any simulator that PyNN supports (currently NEURON, NEST, PCSIM and Brian). PyNN translates standard cell-model names and parameter names into simulator-specific names. Package: python-pyo Version: 0.6.6-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 10239 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), libc6 (>= 2.14), liblo7 (>= 0.26~repack), libportaudio2 (>= 19+svn20101113), libportmidi0, libsndfile1 (>= 1.0.20), python (<< 2.8) Recommends: python-tk, python-imaging-tk, python-wxgtk2.8 Homepage: http://code.google.com/p/pyo/ Priority: optional Section: python Filename: pool/main/p/python-pyo/python-pyo_0.6.6-1~nd13.04+1_amd64.deb Size: 4992968 SHA256: 1b6293b7a6805899fbdab28617fa39e82708017efcd53fe72f125d9e59f77ef1 SHA1: 22ff04c99049c743a29262115436b4a08d9fdf01 MD5sum: 1a0a0dbd665ba3047b64e074416b918b Description: Python module written in C to help digital signal processing script creation pyo is a Python module containing classes for a wide variety of audio signal processing types. With pyo, user will be able to include signal processing chains directly in Python scripts or projects, and to manipulate them in real time through the interpreter. Tools in pyo module offer primitives, like mathematical operations on audio signal, basic signal processing (filters, delays, synthesis generators, etc.), but also complex algorithms to create sound granulation and others creative audio manipulations. . pyo supports OSC protocol (Open Sound Control), to ease communications between softwares, and MIDI protocol, for generating sound events and controlling process parameters. . pyo allows creation of sophisticated signal processing chains with all the benefits of a mature, and wildly used, general programming language. Package: python-pypsignifit Source: psignifit3 Version: 3.0~beta.20120611.1-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1595 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.6), python (<< 2.8), python (>= 2.7), python-support (>= 0.90.0), python-numpy, python-matplotlib, python-scipy Homepage: http://psignifit.sourceforge.net Priority: extra Section: python Filename: pool/main/p/psignifit3/python-pypsignifit_3.0~beta.20120611.1-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 445714 SHA256: d3d0f100c8fff1efa854a63dbbe6750b80bd2cc81832fbd71834866d608d27fe SHA1: 238bae4094d300fe346e7ada48368575be6e7b4c MD5sum: 8c8da4fd139fb24a87ab78628092f40f Description: psychometric analysis of psychophysics data in Python Psignifit allows fitting of psychometric functions to datasets while maintaining full control over a large number of parameters. Psignifit performs the calculation of confidence intervals as well as goodness-of-fit tests. In addition it offers: . * full Bayesian treatment of psychometric functions including Bayesian model selection and goodness of fit assessment * identification of influential observations and outlier detection * flexible shape definition of the psychometric function . This package provides the Python bindings. Package: python-pyxnat Source: pyxnat Version: 0.9.1+git39-g96bf069-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 862 Depends: neurodebian-popularity-contest, python-lxml, python-simplejson, python-httplib2 (>= 0.7.0) Recommends: python-networkx, python-matplotlib Homepage: http://packages.python.org/pyxnat/ Priority: extra Section: python Filename: pool/main/p/pyxnat/python-pyxnat_0.9.1+git39-g96bf069-1~nd12.10+1+nd13.04+1_all.deb Size: 190396 SHA256: a742f5f47842ee38e7491416ea0de9e721716c69c4cf32cae51ad2367a8d89c2 SHA1: c687df5e68cc79fba85924061a7f8e3d9732903e MD5sum: 4e5a040be6b4430eab9ed7922df103ee Description: Interface to access neuroimaging data on XNAT servers pyxnat is a simple Python library that relies on the REST API provided by the XNAT platform since its 1.4 version. XNAT is an extensible database for neuroimaging data. The main objective is to ease communications with an XNAT server to plug-in external tools or Python scripts to process the data. It features: . - resources browsing capabilities - read and write access to resources - complex searches - disk-caching of requested files and resources Package: python-scikits-learn Source: scikit-learn Version: 0.15.2-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 44 Depends: neurodebian-popularity-contest, python-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: oldlibs Filename: pool/main/s/scikit-learn/python-scikits-learn_0.15.2-2~nd13.04+1_all.deb Size: 41384 SHA256: b20d5b695324b092d24fb92e65af6ba3185dbb21f702b56d8eabafb1a67a3d0b SHA1: 1359921e8c83c166dddd18382665be431aa9a50c MD5sum: acfa1426f0494d68b05937b548e51e27 Description: transitional compatibility package for scikits.learn -> sklearn migration Provides old namespace (scikits.learn) and could be removed if dependent code migrated to use sklearn for clarity of the namespace. Package: python-scikits.statsmodels Source: statsmodels Version: 0.5.0-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9 Depends: neurodebian-popularity-contest, python-statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: oldlibs Filename: pool/main/s/statsmodels/python-scikits.statsmodels_0.5.0-1~nd13.04+1_all.deb Size: 5636 SHA256: edd8cc37a13fde303ab919fcf0382e1537107b555ee4063bb0fdf252aefb265f SHA1: 47674665c8a46c2db0e7fec5f3788e0508a769ea MD5sum: 5c856d0a92039b7a0d29eb5a2a90a834 Description: transitional compatibility package for statsmodels migration Provides old namespace (scikits.statsmodels) and could be removed if dependent code migrated to use statsmodels for clarity of the namespace. Package: python-skimage Source: skimage Version: 0.9.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6267 Depends: neurodebian-popularity-contest, libfreeimage3, python-numpy, python-scipy (>= 0.10), python-skimage-lib (>= 0.9.3-1~nd13.04+1), python (>= 2.7.1-0ubuntu2), python (<< 2.8) Recommends: python-imaging, python-pil, python-matplotlib (>= 1.0), python-nose, python-qt4 Suggests: python-opencv, python-skimage-doc Homepage: http://scikit-image.org Priority: optional Section: python Filename: pool/main/s/skimage/python-skimage_0.9.3-1~nd13.04+1_all.deb Size: 4538304 SHA256: 70a57093bb1b630c026bc7cacb220b8745bef71790b64b81f3ee91e94bc3fe29 SHA1: f58745e31575ab0834728c289ee0351e1f0d3a8b MD5sum: ac02970dbde3897c72124b6c1d595a18 Description: Python modules for image processing scikit-image is a collection of image processing algorithms for Python. It performs tasks such as image loading, filtering, morphology, segmentation, color conversions, and transformations. . This package provides the Python 2 module. Package: python-skimage-doc Source: skimage Version: 0.9.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 17726 Depends: neurodebian-popularity-contest, libjs-sphinxdoc (>= 1.0) Suggests: python-skimage Homepage: http://scikit-image.org Priority: optional Section: doc Filename: pool/main/s/skimage/python-skimage-doc_0.9.3-1~nd13.04+1_all.deb Size: 14618750 SHA256: 96d3ce3d82f535b0cf4761e0ab80b663a0d3834c95f07554b0b2567c276a59f7 SHA1: a97e414b8b7f6f32a00963a443ccf564b8fa868a MD5sum: ebbd55b17d3d641ab3331eecc156900a Description: Documentation and examples for scikit-image This package contains documentation and example scripts for python-skimage. Package: python-skimage-lib Source: skimage Version: 0.9.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5637 Depends: neurodebian-popularity-contest, python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7), python (<< 2.8), libc6 (>= 2.14) Recommends: python-skimage Provides: python2.7-skimage-lib Homepage: http://scikit-image.org Priority: optional Section: python Filename: pool/main/s/skimage/python-skimage-lib_0.9.3-1~nd13.04+1_amd64.deb Size: 1989914 SHA256: 3303af531bd213dcf771137f31b748d6433d315d0519891ccc25e38af382cd84 SHA1: 15e50e901fd908ba4d9a59001f670586bcc54f80 MD5sum: 86ffce7a15dac027ef5e0659a2410212 Description: Optimized low-level algorithms for scikit-image This is an add-on package for python-skimage. It provides optimized, low-level implementations of algorithms. . This package provides the Python 2 libraries. Python-Version: 2.7 Package: python-sklearn Source: scikit-learn Version: 0.15.2-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4068 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-sklearn-lib (>= 0.15.2-2~nd13.04+1), python-joblib (>= 0.4.5) Recommends: python-nose, python-matplotlib Suggests: python-dap, python-scikits-optimization, python-sklearn-doc, ipython Enhances: python-mdp, python-mvpa2 Breaks: python-scikits-learn (<< 0.9~) Replaces: python-scikits-learn (<< 0.9~) Provides: python2.7-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: python Filename: pool/main/s/scikit-learn/python-sklearn_0.15.2-2~nd13.04+1_all.deb Size: 1210566 SHA256: c95c530c8f8321536d1386a68b3206d4155101f84c7c77afb37ac4e42c03894f SHA1: e81c1fa90d793c3aee290dc647c627c1ae2a80c8 MD5sum: 3500ea1f29fda760aa00ce842ea83ad0 Description: Python modules for machine learning and data mining scikit-learn is a collection of Python modules relevant to machine/statistical learning and data mining. Non-exhaustive list of included functionality: - Gaussian Mixture Models - Manifold learning - kNN - SVM (via LIBSVM) Package: python-sklearn-doc Source: scikit-learn Version: 0.15.2-2~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 66389 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-sklearn Conflicts: python-scikits-learn-doc Replaces: python-scikits-learn-doc Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: doc Filename: pool/main/s/scikit-learn/python-sklearn-doc_0.15.2-2~nd13.04+1_all.deb Size: 50993768 SHA256: 7c107594d78a3ad17cf037d5f8ca417bc741edac6bdeb737e1d7ff955dc4f3f6 SHA1: d6bf646a4ba82601060f744c0664454479ed16bb MD5sum: 778773f831bfb6f11e7bc5bd6b98a049 Description: documentation and examples for scikit-learn This package contains documentation and example scripts for python-sklearn. Package: python-sklearn-lib Source: scikit-learn Version: 0.15.2-2~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 4177 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7), python (<< 2.8) Conflicts: python-scikits-learn-lib Replaces: python-scikits-learn-lib Provides: python2.7-sklearn-lib Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: python Filename: pool/main/s/scikit-learn/python-sklearn-lib_0.15.2-2~nd13.04+1_amd64.deb Size: 1683242 SHA256: 4d4ffd526eab3dc4c5f769c1c7024bc059d13b3867cd6a28bd752632dc49f136 SHA1: 2b9979e0570f8e7291cce46a1197a691c06b85aa MD5sum: 381409ff25fe7add6e836db4ba94e869 Description: low-level implementations and bindings for scikit-learn This is an add-on package for python-sklearn. It provides low-level implementations and custom Python bindings for the LIBSVM library. Package: python-spyderlib Source: spyder Version: 2.2.5+dfsg-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4009 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), libjs-sphinxdoc (>= 1.0), libjs-jquery, libjs-mathjax, python-qt4 Recommends: ipython-qtconsole, pep8, pyflakes (>= 0.5.0), pylint, python-matplotlib, python-numpy, python-psutil (>= 0.3.0), python-rope, python-scipy, python-sphinx Suggests: tortoisehg, gitk Breaks: spyder (<< 2.0.12-1) Replaces: spyder (<< 2.0.12-1) Provides: python2.7-spyderlib Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: python Filename: pool/main/s/spyder/python-spyderlib_2.2.5+dfsg-1~nd13.04+1_all.deb Size: 1847880 SHA256: 379f4058e083e07aa6eacb71e7c8a0660492df755ff7cd485b1448eae26e97d4 SHA1: e3c7c59a3341f43168d321a74e13607cf3ebd756 MD5sum: 794e56f72fc037355fc68d1dd24408e9 Description: python IDE for scientists Originally written to design Spyder (the Scientific PYthon Development EnviRonment), the spyderlib Python library provides ready-to-use pure-Python widgets: source code editor with syntax highlighting and code introspection/analysis features, NumPy array editor, dictionary editor, Python console, etc. It's based on the Qt Python binding module PyQt4 (and is compatible with PySide since v2.2). Package: python-spykeutils Source: spykeutils Version: 0.4.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2017 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-scipy, python-quantities, python-neo (>= 0.2.1), python-nose, python-sphinx Recommends: python-guidata, python-guiqwt, python-tables, libjs-jquery, libjs-underscore, python-sklearn (>= 0.11), python-joblib (>= 0.4.5) Provides: python2.7-spykeutils Homepage: https://github.com/rproepp/spykeutils Priority: extra Section: python Filename: pool/main/s/spykeutils/python-spykeutils_0.4.1-1~nd13.04+1_all.deb Size: 401300 SHA256: 7e36271bebc926fd6a4137f162575178a763ebd5b4204d62d790f4d93d95f5a5 SHA1: 3046c2f4388c1ef502b2b67d596b9eb185eee1b4 MD5sum: 4182e8a63e9605ed55f30a3bacf36789 Description: utilities for analyzing electrophysiological data spykeutils is a Python library for analyzing and plotting data from neurophysiological recordings. It can be used by itself or in conjunction with Spyke Viewer, a multi-platform GUI application for navigating electrophysiological datasets. Package: python-statsmodels Source: statsmodels Version: 0.5.0-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 20432 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-numpy, python-scipy, python-statsmodels-lib (>= 0.5.0-1~nd13.04+1), python-patsy Recommends: python-pandas, python-matplotlib, python-nose, python-joblib Conflicts: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Replaces: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Provides: python2.7-statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: python Filename: pool/main/s/statsmodels/python-statsmodels_0.5.0-1~nd13.04+1_all.deb Size: 4682438 SHA256: 2a21d2b08addd50290ec03381e2ee92c1e7be25e9a5ef0abd907c4416442f933 SHA1: c98e31786fde183d1d5ab82dccd28a1547f61941 MD5sum: bbfda8bb9802b1ab252f1414f429f82a Description: Python module for the estimation of statistical models statsmodels Python module provides classes and functions for the estimation of several categories of statistical models. These currently include linear regression models, OLS, GLS, WLS and GLS with AR(p) errors, generalized linear models for six distribution families and M-estimators for robust linear models. An extensive list of result statistics are available for each estimation problem. Package: python-statsmodels-doc Source: statsmodels Version: 0.5.0-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 32549 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-statsmodels Conflicts: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Replaces: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: doc Filename: pool/main/s/statsmodels/python-statsmodels-doc_0.5.0-1~nd13.04+1_all.deb Size: 9253286 SHA256: 6fe726032db301674769285750d43dabeadc30ff9771efcc14e2095f0f911177 SHA1: be795b20ee9adfe7fcb982602430c5d89c70e8b7 MD5sum: 2d2d70302b9c703bc34ff802b3d9830b Description: documentation and examples for statsmodels This package contains HTML documentation and example scripts for python-statsmodels. Package: python-statsmodels-lib Source: statsmodels Version: 0.5.0-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 358 Depends: neurodebian-popularity-contest, python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7), python (<< 2.8), libc6 (>= 2.4) Conflicts: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Replaces: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: python Filename: pool/main/s/statsmodels/python-statsmodels-lib_0.5.0-1~nd13.04+1_amd64.deb Size: 105300 SHA256: c39520ee20ba5aa53b4ca743f78841f2f511c7fb69860b0a6db26d8006702503 SHA1: 64adf877a16b9eeec92f2b192e5e2a8b7034738a MD5sum: 0a6a0528a87b045652fb6797ef02fbbc Description: low-level implementations and bindings for statsmodels This package contains architecture dependent extensions for python-statsmodels. Package: python-stfio Source: stimfit Version: 0.13.18-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 519 Depends: neurodebian-popularity-contest, python (<< 2.8), python (>= 2.7.1-0ubuntu2), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, libbiosig1, libc6 (>= 2.14), libcholmod1.7.1 (>= 1:3.4.0), libgcc1 (>= 1:4.1.1), libhdf5-7, libpython2.7 (>= 2.7), libstdc++6 (>= 4.4.0), libbiosig-dev, libsuitesparse-dev Recommends: python-matplotlib, python-scipy, python-pandas Provides: python2.7-stfio Homepage: http://www.stimfit.org Priority: optional Section: python Filename: pool/main/s/stimfit/python-stfio_0.13.18-1~nd13.04+1_amd64.deb Size: 227436 SHA256: 154b6c85f67f43d0800938b2a713dde465d03ac4919061d2ef8a3e531cd66426 SHA1: 862098f40539ca0f3b694df724408e6a1b5b7467 MD5sum: 2f60280f5714b412f7e7c45ed48d21fb Description: Python module to read common electrophysiology file formats. The stfio module allows you to read common electrophysiology file formats from Python. Axon binaries (abf), Axon text (atf), HEKA (dat), CFS (dat/cfs), Axograph (axgd/axgx) are currently supported. Package: python-surfer Source: pysurfer Version: 0.3+git15-gae6cbb1-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 93 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-nibabel, python-imaging, mayavi2, python-argparse, ipython Recommends: mencoder Homepage: http://pysurfer.github.com Priority: extra Section: python Filename: pool/main/p/pysurfer/python-surfer_0.3+git15-gae6cbb1-1~nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 28126 SHA256: d027822bf6edf7f8e4a4726abfa4bff05a553010e617229cf66c9ebc39f260ae SHA1: ae3d0fa877af7818bb783d737f8a8df882765042 MD5sum: db1308bda1624dc4cacc037c4519bbc7 Description: visualize Freesurfer's data in Python This is a Python package for visualization and interaction with cortical surface representations of neuroimaging data from Freesurfer. It extends Mayavi’s powerful visualization engine with a high-level interface for working with MRI and MEG data. . PySurfer offers both a command-line interface designed to broadly replicate Freesurfer’s Tksurfer program as well as a Python library for writing scripts to efficiently explore complex datasets. Python-Version: 2.7 Package: python-traits4 Source: python-traits Version: 4.0.0-1~cbp1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Bugs: mailto:bugs@neuro.debian.net Maintainer: NeuroDebian Team Installed-Size: 1679 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), python (<< 2.8), python (>= 2.7), python-support (>= 0.90.0) Suggests: python-traitsui Conflicts: python-traits (>= 4.0~) Homepage: http://pypi.python.org/pypi/traits Priority: optional Section: python Filename: pool/main/p/python-traits/python-traits4_4.0.0-1~cbp1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 342836 SHA256: 213c6224e36513eec318e67e47e29c24ff908194c0c817a78454ad47ad4b970a SHA1: 2f9f9802925932f03e1678d138a16977dfdc3bfe MD5sum: 3ee1f2da8b90698052ab222648a7b52c Description: Manifest typing and reactive programming for Python The traits package provides a metaclass with special attributes that are called traits. A trait is a type definition that can be used for normal Python object attributes, giving the attributes some additional characteristics: * Initialization: A trait attribute can have a default value * Validation: A trait attribute is manifestly typed. * Delegation: The value of a trait attribute can be contained in another object * Notification: Setting the value of a trait attribute can fired callbacks * Visualization: With the TraitsUI package, GUIs can be generated automatically from traited objects. Uploaders: Yaroslav Halchenko , Michael Hanke Vcs-Browser: http://git.debian.org/?p=pkg-exppsy/python-traits4.git Vcs-Git: git://git.debian.org/git/pkg-exppsy/python-traits4.git Package: python-visionegg Source: visionegg Version: 1.2.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1738 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgl1-mesa-glx, python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python (>= 2.7.1-0ubuntu2), python (<< 2.8) Homepage: http://www.visionegg.org Priority: optional Section: python Filename: pool/main/v/visionegg/python-visionegg_1.2.1-1~nd13.04+1_amd64.deb Size: 666584 SHA256: dc308915c93ede96477a387cf787dcd5339d3528299c30bc205697cfbae7c06f SHA1: b9a10cc529661bf8ef98876cbab56c75892129ee MD5sum: d4c89cb6a71f52ca7f17b005a3162020 Description: Python library for 2D/3D visual stimulus generation The Vision Egg is a programming library that uses standard, inexpensive computer graphics cards to produce visual stimuli for vision research experiments. Package: python3-datalad Source: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, git-annex (>= 8.20200309~) | git-annex-standalone (>= 8.20200309~), patool, p7zip-full, python3 (>= 3.7), python3-annexremote, python3-distro, python3-distutils | libpython3-stdlib (<= 3.6.4~rc1-2), python3-fasteners (>= 0.14~), python3-gitlab, python3-humanize, python3-importlib-metadata | python3 (>> 3.10), python3-iso8601, python3-keyring, python3-keyrings.alt | python3-keyring (<= 8), python3-mock, python3-msgpack, python3-pil, python3-platformdirs, python3-requests (>= 1.2), python3-secretstorage, python3-simplejson, python3-six, python3-tqdm, python3-chardet, python3-packaging, python3:any Recommends: python3-boto, python3-exif, python3-html5lib, python3-httpretty, python3-jsmin, python3-libxmp, python3-lzma, python3-mutagen, python3-pytest, python3-pyperclip, python3-requests-ftp, python3-vcr, python3-whoosh Suggests: python3-duecredit, datalad-container, datalad-crawler, datalad-neuroimaging, python3-bs4, python3-numpy Breaks: datalad-container (<< 1.1.2) Homepage: https://datalad.org Priority: optional Section: python Filename: pool/main/d/datalad/python3-datalad_0.17.5-1~nd+1_all.deb Size: 958872 SHA256: 1f3e16c16863bab40ba92405109ab26c78f19e3e86e2b38733a035221c4e7744 SHA1: 873da190eb5ee83576ff519c2d564e1f841abe5b MD5sum: 7a97a6f55929cc103dd60d7783a9565e Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) . This package installs the module for Python 3, and Recommends install all dependencies necessary for searching and managing datasets, publishing, and testing. If you need base functionality, install without Recommends. Package: python3-joblib Source: joblib Version: 0.8.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 251 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~) Recommends: python3-numpy, python3-nose, python3-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python3-joblib_0.8.3-1~nd13.04+1_all.deb Size: 71374 SHA256: 5effc03ece7128e7da9949182a4c6c1804e6847d104ccc7704e5c3bae83d34de SHA1: 552d1ec1bd839fc7dcadfd2d92342735ca217c4e MD5sum: b1bad6cfa47344140752d2976ade04de Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: . - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. . This package contains the Python 3 version. Package: python3-mdp Source: mdp Version: 3.3+git6-g7bbd889-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1457 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-numpy Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python3-mdp_3.3+git6-g7bbd889-1~nd12.10+1+nd13.04+1_all.deb Size: 472534 SHA256: d3239c36162185a4ef03148ce61949c6f7a9e74670d56c88722e4200721b57dc SHA1: 2562033ca9918601e8f0cd28eff8146a5a610d52 MD5sum: 735efdc181c99b658b0e9276ea66e384 Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 3. Package: python3-mpi4py Source: mpi4py Version: 1.3.1+hg20131106-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 1304 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libopenmpi1.3, python3 (>= 3.3), python3 (<< 3.4) Recommends: mpi-default-bin Suggests: python3-numpy Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: python Filename: pool/main/m/mpi4py/python3-mpi4py_1.3.1+hg20131106-1~nd13.04+1_amd64.deb Size: 440408 SHA256: c99bcdcc6d693393afea76a0fd65d51ca1bc7844af704368048c0c7610e5af8c SHA1: 73ba7b827139e3dbf83ce79483f53a7dc2a5e319 MD5sum: 1b2513d8b52450c7e9b621531430c6bd Description: bindings of the Message Passing Interface (MPI) standard MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). Package: python3-mpi4py-dbg Source: mpi4py Version: 1.3.1+hg20131106-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5434 Depends: neurodebian-popularity-contest, python3-mpi4py (= 1.3.1+hg20131106-1~nd13.04+1) Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: debug Filename: pool/main/m/mpi4py/python3-mpi4py-dbg_1.3.1+hg20131106-1~nd13.04+1_amd64.deb Size: 1291448 SHA256: ebd6500ae20e7f91c1c13af031347a995c3beefb6f24e68efcb4d11d0655e7cf SHA1: 6332a8ce2e1236367e16e8ee7bba891b75962bf7 MD5sum: 37e39f6c179099bd59c681c5a745b1ac Description: bindings of the MPI standard -- debug symbols MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). . This package provides debug symbols. Package: python3-pandas Source: pandas Version: 0.14.1-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8918 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-dateutil, python3-tz, python3-numpy (>= 1:1.6~), python3-pandas-lib (>= 0.14.1-1~nd13.04+1) Recommends: python3-scipy, python3-matplotlib, python3-numexpr, python3-tables, python3-bs4, python3-html5lib, python3-six Suggests: python-pandas-doc Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python3-pandas_0.14.1-1~nd13.04+1_all.deb Size: 1660912 SHA256: b7342abe703832329309a13101abd14ad713050bad039efdbd87e1dd4b962ada SHA1: 11f747c7cfc07072008407b09a02e9c1a81f5149 MD5sum: aeb0a6fc27b5fa3a22ab8012695a2d1f Description: data structures for "relational" or "labeled" data - Python 3 pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the Python 3 version. Package: python3-pandas-lib Source: pandas Version: 0.14.1-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 4950 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), python3-numpy (>= 1:1.7-0~b1), python3-numpy-abi9, python3 (>= 3.3), python3 (<< 3.4) Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python3-pandas-lib_0.14.1-1~nd13.04+1_amd64.deb Size: 1843826 SHA256: 0f221bc0b1bccc192332c06c3df43bd171479150a36e62f47eb45a550c35e78a SHA1: 7786c56bd47f609ec57f541548e5df5ff638d919 MD5sum: 4d531f3933b19e66b5211af1fe35d591 Description: low-level implementations and bindings for pandas - Python 3 This is an add-on package for python-pandas providing architecture-dependent extensions. . This package contains the Python 3 version. Package: python3-patsy Source: patsy Version: 0.3.0-3~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 719 Depends: neurodebian-popularity-contest, python3 (>= 3.2.3-3~), python3-numpy Recommends: python3-pandas Suggests: python-patsy-doc Homepage: http://github.com/pydata/patsy Priority: optional Section: python Filename: pool/main/p/patsy/python3-patsy_0.3.0-3~nd13.04+1_all.deb Size: 214108 SHA256: 704c310f30f81fe11cd54fb5f7f78746d376f330caa0e687a45395786ee91446 SHA1: d02159d5e72db8b2d12b1a1f9d48e7769a459c11 MD5sum: 122a913f8d691558eba553f43dbbd72a Description: statistical models in Python using symbolic formulas patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. . This package contains the Python 3 version. Package: python3-skimage Source: skimage Version: 0.9.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6178 Depends: neurodebian-popularity-contest, libfreeimage3, python3-numpy, python3-scipy (>= 0.10), python3-skimage-lib (>= 0.9.3-1~nd13.04+1), python3 (>= 3.2.3-3~) Recommends: python3-imaging, python3-pil, python3-matplotlib (>= 1.0), python3-nose Suggests: python-skimage-doc Homepage: http://scikit-image.org Priority: optional Section: python Filename: pool/main/s/skimage/python3-skimage_0.9.3-1~nd13.04+1_all.deb Size: 4532470 SHA256: 4989d126acf8958f76b2f68cf79647afe8691c728f77de03475724b66b1fb20e SHA1: 8fdf86d214857739d84c324e38b7916a16813234 MD5sum: 97688f6d6ac6038b1e1cfeda08e9281e Description: Python 3 modules for image processing scikit-image is a collection of image processing algorithms for Python. It performs tasks such as image loading, filtering, morphology, segmentation, color conversions, and transformations. . This package provides the Python 3 module. Package: python3-skimage-lib Source: skimage Version: 0.9.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5343 Depends: neurodebian-popularity-contest, python3-numpy (>= 1:1.7-0~b1), python3-numpy-abi9, python3 (>= 3.3), python3 (<< 3.4), libc6 (>= 2.14) Recommends: python3-skimage Homepage: http://scikit-image.org Priority: optional Section: python Filename: pool/main/s/skimage/python3-skimage-lib_0.9.3-1~nd13.04+1_amd64.deb Size: 1855702 SHA256: a6bbf877b44b317bcf3e74493dd44a2b061a6d2616bded745a88802a89731ccc SHA1: 57515f99bf93d52606be850768a480b43742221e MD5sum: 4c8ff64bd2408526e733ee39cd4ef0c4 Description: Optimized low-level algorithms for Python 3 scikit-image This is an add-on package for python-skimage. It provides optimized, low-level implementations of algorithms. . This package provides the Python 3 libraries. Package: qnifti2dicom Source: nifti2dicom Version: 0.4.8-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 3038 Depends: neurodebian-popularity-contest, libc6 (>= 2.14), libgcc1 (>= 1:4.1.1), libgdcm2.2, libinsighttoolkit4.3, libqtcore4 (>= 4:4.7.0~beta1), libqtgui4 (>= 4:4.5.3), libstdc++6 (>= 4.4.0), libvtk5.8, libvtk5.8-qt4, nifti2dicom (= 0.4.8-1~nd13.04+1), nifti2dicom-data (= 0.4.8-1~nd13.04+1) Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/qnifti2dicom_0.4.8-1~nd13.04+1_amd64.deb Size: 642380 SHA256: 259435fd946ef6d5fb6f13e7ba337065cb64f06af23c5e30a016bc5358642d78 SHA1: eda9a7ba3205c2222f30665ec8378f2a0ccdd827 MD5sum: 98817aec03ea69faa02e57f4e90e6be6 Description: convert 3D medical images to DICOM 2D series (gui) Nifti2Dicom is a convertion tool that converts 3D NIfTI files (and other formats supported by ITK, including Analyze, MetaImage Nrrd and VTK) to DICOM. Unlike other conversion tools, it can import a DICOM file that is used to import the patient and study DICOM tags, and allows you to edit the accession number and other DICOM tags, in order to create a valid DICOM that can be imported in a PACS. . This package contains the Qt4 GUI. Package: rclone Version: 1.41-1~ndall0 Architecture: amd64 Maintainer: Debian Go Packaging Team Installed-Size: 19633 Depends: libc6 (>= 2.3.2) Built-Using: go-md2man (= 1.0.8+ds-1), golang-1.10 (= 1.10.3-1), golang-bazil-fuse (= 0.0~git20160811.0.371fbbd-2), golang-github-a8m-tree (= 0.0~git20171213.cf42b1e-1), golang-github-abbot-go-http-auth (= 0.0~git20150714.0.46b9627-2), golang-github-aws-aws-sdk-go (= 1.12.79+dfsg-1), golang-github-azure-azure-sdk-for-go (= 10.3.0~beta-1), golang-github-azure-go-autorest (= 8.3.1-1), golang-github-coreos-bbolt (= 1.3.1-coreos.5-1), golang-github-davecgh-go-spew (= 1.1.0-4), golang-github-dgrijalva-jwt-go-v3 (= 3.1.0-2), golang-github-djherbis-times (= 1.0.1+git20170215.d25002f-1), golang-github-dropbox-dropbox-sdk-go-unofficial (= 4.1.0-1), golang-github-go-ini-ini (= 1.32.0-2), golang-github-google-go-querystring (= 0.0~git20170111.0.53e6ce1-4), golang-github-jlaffaye-ftp (= 0.0~git20170707.0.a05056b-1), golang-github-jmespath-go-jmespath (= 0.2.2-2), golang-github-kardianos-osext (= 0.0~git20170510.0.ae77be6-5), golang-github-kr-fs (= 0.0~git20131111.0.2788f0d-2), golang-github-mattn-go-runewidth (= 0.0.2+git20170510.3.97311d9-1), golang-github-ncw-go-acd (= 0.0~git20171120.887eb06-1), golang-github-unknwon-goconfig (= 0.0~git20160828.0.5aa4f8c-3), golang-github-vividcortex-ewma (= 0.0~git20160822.20.c595cd8-3), golang-google-cloud (= 0.9.0-5), golang-goprotobuf (= 0.0~git20170808.0.1909bc2-2) Homepage: https://github.com/ncw/rclone Priority: optional Section: net Filename: pool/main/r/rclone/rclone_1.41-1~ndall0_amd64.deb Size: 4810068 SHA256: b62160db730a2285a36444f0eb30a9f4c6a67957e03fff27de9cc3f8a7ecd689 SHA1: 68368135f21e5fa81d2904f9391054208697d5b3 MD5sum: f58523511ec0a1334697803e366f753e Description: rsync for commercial cloud storage Rclone is a program to sync files and directories between the local file system and a variety of commercial cloud storage providers: . - Google Drive - Amazon S3 - Openstack Swift / Rackspace cloud files / Memset Memstore - Dropbox - Google Cloud Storage - Amazon Drive - Microsoft One Drive - Hubic - Backblaze B2 - Yandex Disk Package: spm8-common Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 18499 Depends: neurodebian-popularity-contest Recommends: spm8-data, spm8-doc Priority: extra Section: science Filename: pool/main/s/spm8/spm8-common_8.5236~dfsg.1-1~nd12.10+1+nd13.04+1_all.deb Size: 10744012 SHA256: 8cbaf2ef8a3621e1a45f8046a5a4b3f5018599cd5fd061dbdab3f6f636db55dc SHA1: 358a47eca3c2a8e45383012ebb1db5ed7e315d4f MD5sum: 2ea4c1626f3ecc1a0f8b72afe93d7325 Description: analysis of brain imaging data sequences Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the platform-independent M-files. Package: spm8-data Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 72987 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/s/spm8/spm8-data_8.5236~dfsg.1-1~nd12.10+1+nd13.04+1_all.deb Size: 52166644 SHA256: adf5ccd28c33d360fddc672827cc45f128dd95d107e6fc80ec7b5f01013199b8 SHA1: 555fd27c1066c8cdc3f9d5ca88e1a5604af0f318 MD5sum: 007b37221423d90e041d57b47f112413 Description: data files for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provide the data files shipped with the SPM distribution, such as various stereotaxic brain space templates and EEG channel setups. Package: spm8-doc Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 9242 Depends: neurodebian-popularity-contest Priority: extra Section: doc Filename: pool/main/s/spm8/spm8-doc_8.5236~dfsg.1-1~nd12.10+1+nd13.04+1_all.deb Size: 8990888 SHA256: 26ace888d49d3abb1c4525fff11e3538aaf54bdeb7bd0f37720b5a32c211055d SHA1: 3e7bd77be9b08a8227586a6138fba786fa7a5365 MD5sum: 823a54d07acd71360de860ff3f62e019 Description: manual for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the SPM manual in PDF format. Package: spyder Version: 2.2.5+dfsg-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 94 Depends: neurodebian-popularity-contest, python, python-spyderlib (= 2.2.5+dfsg-1~nd13.04+1) Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: devel Filename: pool/main/s/spyder/spyder_2.2.5+dfsg-1~nd13.04+1_all.deb Size: 36074 SHA256: 95beb4bfca945126e17f36852c4a4ce3cc8f7e7875c21f22d8e7b6de27cb0e73 SHA1: b6377d55d2fb282b643d0e6aca5498fcd1b905eb MD5sum: c15381c5f383a2cb05d27e0ab7c20525 Description: python IDE for scientists Spyder (previously known as Pydee) is a free open-source Python development environment providing MATLAB-like features in a simple and light-weighted software Package: spykeviewer Version: 0.4.2-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1128 Depends: neurodebian-popularity-contest, python (>= 2.7.1-0ubuntu2), python (<< 2.8), python-guidata, python-guiqwt (>= 2.1.4), python-spyderlib, python-spykeutils (>= 0.4.0), python-neo (>= 0.2.1), python-matplotlib, python-scipy, python-nose, python-sphinx, python-tables Recommends: libjs-jquery, libjs-underscore, ipython-qtconsole (>= 0.12) Homepage: http://www.ni.tu-berlin.de/software/spykeviewer Priority: extra Section: python Filename: pool/main/s/spykeviewer/spykeviewer_0.4.2-1~nd13.04+1_all.deb Size: 577518 SHA256: ec09902351934aa97cdaea413bcfb81849d1ece62997ce6d2b2825cb49ea7077 SHA1: 82f0bf3a62774c8225474e519c5d1e61d448585c MD5sum: 14d4df8a1ad15126c3a87f890cd14823 Description: graphical utility for analyzing electrophysiological data Spyke Viewer is a multi-platform GUI application for navigating, analyzing and visualizing electrophysiological datasets. Based on the Neo framework, it works with a wide variety of data formats. Spyke Viewer includes an integrated Python console and a plugin system for custom analyses and plots. Package: stabilitycalc Version: 0.1-1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 119 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy, python-matplotlib, python-scipy, python-nifti Recommends: python-dicom Homepage: https://github.com/bbfrederick/stabilitycalc Priority: extra Section: science Filename: pool/main/s/stabilitycalc/stabilitycalc_0.1-1~nd11.04+1+nd11.10+1+nd12.04+1+nd12.10+1+nd13.04+1_all.deb Size: 28806 SHA256: f4d0a92bd82ccf13995bd023e60482c9bb6e5bcc276aacf8d6d71f47c726ac91 SHA1: 5d37dfd09ba13dca96797dc779dfd58616624062 MD5sum: 64c06762e13f6bd6a33f11383612ccc0 Description: evaluate fMRI scanner stability Command-line tools to calculate numerous fMRI scanner stability metrics, based on the FBIRN quality assurance test protocal. Any 4D volumetric timeseries image in NIfTI format is support input. Output is a rich HTML report. Python-Version: 2.7 Package: stimfit Version: 0.13.18-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 2249 Depends: neurodebian-popularity-contest, libbiosig1, libblas3 | libblas.so.3 | libatlas3-base, libc6 (>= 2.14), libcholmod1.7.1 (>= 1:3.4.0), libfftw3-double3, libgcc1 (>= 1:4.1.1), libhdf5-7, liblapack3 | liblapack.so.3 | libatlas3-base, libpython2.7 (>= 2.7), libstdc++6 (>= 4.4.0), libwxbase2.8-0 (>= 2.8.12.1), libwxgtk2.8-0 (>= 2.8.12.1), python (>= 2.7.1-0ubuntu2), python-numpy (>= 1:1.7-0~b1), python-numpy-abi9, python2.7, libbiosig-dev, libsuitesparse-dev, python-wxgtk2.8 (>= 2.8.9), python-matplotlib Recommends: python-scipy Homepage: http://www.stimfit.org Priority: optional Section: science Filename: pool/main/s/stimfit/stimfit_0.13.18-1~nd13.04+1_amd64.deb Size: 803464 SHA256: 22a9f23758a2fd2d039f99c91a71b1a7081af1f06c335762d9d22d96a15f8303 SHA1: 52d3622bf5663e6ec898c73b4766cdd3b9d29eef MD5sum: 63851c0823d453c926faed93aecd8293 Description: Program for viewing and analyzing electrophysiological data Stimfit is a free, fast and simple program for viewing and analyzing electrophysiological data. It features an embedded Python shell that allows you to extend the program functionality by using numerical libraries such as NumPy and SciPy. Package: stimfit-dbg Source: stimfit Version: 0.13.18-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 22987 Depends: neurodebian-popularity-contest, stimfit Recommends: python-matplotlib, python-scipy, python-stfio Homepage: http://www.stimfit.org Priority: extra Section: debug Filename: pool/main/s/stimfit/stimfit-dbg_0.13.18-1~nd13.04+1_amd64.deb Size: 6622556 SHA256: 118eadb74507ea0f7975369ca0b044d1476e54b2c1b613ea4b0d295ce2d3c321 SHA1: e4822bd7b07e0d2261e5bc87d895f7037cd7b866 MD5sum: 4856652dfc8a5e4d98558b1a6e7b0339 Description: Debug symbols for stimfit Stimfit is a free, fast and simple program for viewing and analyzing electrophysiological data. It features an embedded Python shell that allows you to extend the program functionality by using numerical libraries such as NumPy and SciPy. This package contains the debug symbols for Stimfit. Package: testkraut Version: 0.0.1-1~nd12.10+1+nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 359 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, libjs-underscore, libjs-jquery, python-argparse Recommends: strace, python-scipy, python-colorama, python-apt Homepage: https://github.com/neurodebian/testkraut Priority: extra Section: python Filename: pool/main/t/testkraut/testkraut_0.0.1-1~nd12.10+1+nd13.04+1_all.deb Size: 99674 SHA256: 4bb183a82062eea15a25438731463d7d3a57ac1fd8bbe3f38101b6c3c08c6db2 SHA1: 045ce201ed946332c8971bc0b8f92774aa49e90b MD5sum: 7b33e1503852f85c3d82cd5c0d1c0e54 Description: test and evaluate heterogeneous data processing pipelines This is a framework for software testing. That being said, testkraut tries to minimize the overlap with the scopes of unit testing, regression testing, and continuous integration testing. Instead, it aims to complement these kinds of testing, and is able to re-use them, or can be integrated with them. . In a nutshell testkraut helps to facilitate statistical analysis of test results. In particular, it focuses on two main scenarios: . * Comparing results of a single (test) implementation across different or changing computational environments (think: different operating systems, different hardware, or the same machine before an after a software upgrade). * Comparing results of different (test) implementations generating similar output from identical input (think: performance of various signal detection algorithms). . While such things can be done using other available tools as well, testkraut aims to provide a lightweight, yet comprehensive description of a test run. Such a description allows for decoupling test result generation and analysis – opening up the opportunity to “crowd-source” software testing efforts, and aggregate results beyond the scope of a single project, lab, company, or site. Python-Version: 2.7 Package: utopia-documents Version: 2.4.4-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 19810 Depends: neurodebian-popularity-contest, libboost-python1.49.0 (>= 1.49.0-1), libboost-system1.49.0 (>= 1.49.0-1), libboost-thread1.49.0 (>= 1.49.0-1), libc6 (>= 2.14), libfreetype6 (>= 2.2.1), libgcc1 (>= 1:4.1.1), libgl1-mesa-glx | libgl1, libglew1.8 (>= 1.8.0), libglu1-mesa | libglu1, libpcre3 (>= 8.10), libpcrecpp0 (>= 7.7), libpython2.7 (>= 2.7), libqglviewer-qt4-2 (>= 2.3.4), libqjson0 (>= 0.7.1), libqt4-network (>= 4:4.7.0~beta1), libqt4-opengl (>= 4:4.5.3), libqt4-script (>= 4:4.5.3), libqt4-svg (>= 4:4.5.3), libqt4-xml (>= 4:4.5.3), libqtcore4 (>= 4:4.8.0), libqtgui4 (>= 4:4.8.0), libqtwebkit4, libraptor1 (>= 1.4.21-3), libssl1.0.0 (>= 1.0.0), libstdc++6 (>= 4.6), python (>= 2.7.1-0ubuntu2), python2.7, python-imaging, python-lxml (<< 3.0.0) | python-cssselect, python-lxml, xdg-utils, python-suds Homepage: http://utopiadocs.com Priority: optional Section: science Filename: pool/main/u/utopia-documents/utopia-documents_2.4.4-1~nd13.04+1_amd64.deb Size: 7548326 SHA256: 5fe0dac289f41edd8c1c4f3c4b5122e864ef22d88dd37c04006f1f497b5eec4b SHA1: c36f3f36ddb0783422213bbfa20f1b5bcc2ed5e9 MD5sum: 5ab5383049c089fa25796979d9d78486 Description: PDF reader that displays interactive annotations on scientific articles. Utopia Documents is a free PDF reader that connects the static content of scientific articles to the dynamic world of online content. It makes it easy to explore an article's content and claims, and investigate other recent articles that discuss the same or similar topics. . Get immediate access to an article's metadata and browse the relationship it has with the world at large. Generate a formatted citation for use in your own work, follow bibliographic links to cited articles, or get a document's related data at the click of a button. . Various extensions provide links to blogs, online data sources and to social media sites so you can see what other researchers have been saying about not only the article you're reading but its subject matter too. Package: utopia-documents-dbg Source: utopia-documents Version: 2.4.4-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 45958 Depends: neurodebian-popularity-contest, utopia-documents (= 2.4.4-1~nd13.04+1) Homepage: http://utopiadocs.com Priority: extra Section: debug Filename: pool/main/u/utopia-documents/utopia-documents-dbg_2.4.4-1~nd13.04+1_amd64.deb Size: 44766856 SHA256: eceec647977f8c594e87d5842466a21db303cd1cb6bd58020d1272cd0ddaa564 SHA1: a97329439f1d1d11b4514debc4fb122f6a36fbe7 MD5sum: ecbfab758fcf5a783d59da9ad01b8fa9 Description: debugging symbols for utopia-documents Utopia Documents is a free PDF reader that connects the static content of scientific articles to the dynamic world of online content. . This package contains the debugging symbols for utopia-documents. Package: vowpal-wabbit Version: 7.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 51 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.4.0), libvw0 (= 7.3-1~nd13.04+1) Suggests: vowpal-wabbit-doc Homepage: http://hunch.net/~vw/ Priority: optional Section: science Filename: pool/main/v/vowpal-wabbit/vowpal-wabbit_7.3-1~nd13.04+1_amd64.deb Size: 20698 SHA256: 725d50dd5d6d46b3e2739684af30435950fbb2713f3348834a503ca513c96b23 SHA1: dc1b5eb771f36aaf2c7af6c1e2206144f3c3f09c MD5sum: 43687c30a7a307327363cec7ebe3f34a Description: fast and scalable online machine learning algorithm Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing Package: vowpal-wabbit-dbg Source: vowpal-wabbit Version: 7.3-1~nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 8204 Depends: neurodebian-popularity-contest, vowpal-wabbit (= 7.3-1~nd13.04+1) Homepage: http://hunch.net/~vw/ Priority: extra Section: debug Filename: pool/main/v/vowpal-wabbit/vowpal-wabbit-dbg_7.3-1~nd13.04+1_amd64.deb Size: 2397796 SHA256: 32559df857a749afb91cc308afc1c0287b04686a2da2d5da4bdaef4a8ec07c62 SHA1: 059420c271dd022332d4267764a10ec634084f90 MD5sum: 1db09956bcaedd629d39659a44bd9ede Description: fast and scalable online machine learning algorithm - debug files Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing . This package contains debug symbols for the binaries shipped by vowpal-wabbit packages. Package: vowpal-wabbit-doc Source: vowpal-wabbit Version: 7.3-1~nd13.04+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 70918 Depends: neurodebian-popularity-contest Recommends: vowpal-wabbit Homepage: http://hunch.net/~vw/ Priority: optional Section: doc Filename: pool/main/v/vowpal-wabbit/vowpal-wabbit-doc_7.3-1~nd13.04+1_all.deb Size: 50202370 SHA256: 9dddf9b5b7a2237d4f2a93efd545d867f3d204f1d05ab4d462bf15ea4b55e986 SHA1: 8e49788bf4e88ece7e82ef40224840f79f2eee52 MD5sum: 55654e0768d8a01e3e339294bbb06565 Description: fast and scalable online machine learning algorithm - documentation Vowpal Wabbit is a fast online machine learning algorithm. The core algorithm is specialist gradient descent (GD) on a loss function (several are available). VW features: - flexible input data specification - speedy learning - scalability (bounded memory footprint, suitable for distributed computation) - feature pairing . This package contains examples (tests) for vowpal-wabbit. Package: vrpn Version: 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 323 Depends: neurodebian-popularity-contest, libc6 (>= 2.4), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.1.1), libvrpn0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1), libvrpnserver0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1) Homepage: http://www.cs.unc.edu/Research/vrpn/ Priority: extra Section: utils Filename: pool/main/v/vrpn/vrpn_07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 66056 SHA256: 7e9244bf8026751b964571062d5cef7e3623b86853a9fe91505491790a45d333 SHA1: e5a92f877e8d69f82bb6cad0e44d1fda29bffd90 MD5sum: e29bb265adb354b9d42239bfe8ae614d Description: Virtual Reality Peripheral Network (executables) The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a library and a set of servers that are designed to implement a network-transparent interface between application programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) system. The idea is to have a PC or other host at each VR station that controls the peripherals (tracker, button device, haptic device, analog inputs, sound, etc). VRPN provides connections between the application and all of the devices using the appropriate class-of-service for each type of device sharing this link. The application remains unaware of the network topology. Note that it is possible to use VRPN with devices that are directly connected to the machine that the application is running on, either using separate control programs or running all as a single program. . This package contains the executables like the VRPN server. Package: vrpn-dbg Source: vrpn Version: 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 5732 Depends: neurodebian-popularity-contest, libvrpn0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1), libvrpnserver0 (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1), vrpn (= 07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1) Homepage: http://www.cs.unc.edu/Research/vrpn/ Priority: extra Section: debug Filename: pool/main/v/vrpn/vrpn-dbg_07.30+dfsg-1~nd12.04+1+nd12.10+1+nd13.04+1_amd64.deb Size: 1767192 SHA256: 290a4a45f41649edbed7dd832f79577eed77e9c62591bee85915acc566c3f118 SHA1: 59ab62fc07e4776fef8681ff8ad79b4511ce2587 MD5sum: 56e377e6beec84b247002b4cff5b9766 Description: Virtual Reality Peripheral Network (debugging symbols) The Virtual-Reality Peripheral Network (VRPN) is a set of classes within a library and a set of servers that are designed to implement a network-transparent interface between application programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) system. The idea is to have a PC or other host at each VR station that controls the peripherals (tracker, button device, haptic device, analog inputs, sound, etc). VRPN provides connections between the application and all of the devices using the appropriate class-of-service for each type of device sharing this link. The application remains unaware of the network topology. Note that it is possible to use VRPN with devices that are directly connected to the machine that the application is running on, either using separate control programs or running all as a single program. . This package contains the debugging symbols of the libraries and executables. Package: youtube-dl Version: 2021.12.17-1~nd110+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5937 Depends: neurodebian-popularity-contest, python3-pkg-resources, python3:any Recommends: aria2 | wget | curl, ca-certificates, ffmpeg, mpv | mplayer, python3-pyxattr, rtmpdump, python3-pycryptodome Suggests: libfribidi-bin | bidiv, phantomjs Homepage: https://ytdl-org.github.io/youtube-dl/ Priority: optional Section: web Filename: pool/main/y/youtube-dl/youtube-dl_2021.12.17-1~nd110+1_all.deb Size: 1128692 SHA256: 75859d2f34a475fc0f199cd6d2b73e18c29cda44406530964890dcb790008eca SHA1: 09f85f2abc32eb5e9c2ccd6bfd1354ea332b6489 MD5sum: 6d04814be91bd9f85a7d3793ff2a2fb3 Description: downloader of videos from YouTube and other sites youtube-dl is a small command-line program to download videos from YouTube.com and other sites that don't provide direct links to the videos served. . youtube-dl allows the user, among other things, to choose a specific video quality to download (if available) or let the program automatically determine the best (or worst) quality video to grab. It supports downloading entire playlists and all videos from a given user. . Currently supported sites (or features of sites) are: . 1tv, 20min, 220.ro, 23video, 24video, 3qsdn, 3sat, 4tube, 56.com, 5min, 6play, 7plus, 8tracks, 91porn, 9c9media, 9gag, 9now.com.au, abc.net.au, abc.net.au:iview, abcnews, abcnews:video, abcotvs, abcotvs:clips, AcademicEarth:Course, acast, acast:channel, ADN, AdobeConnect, adobetv, adobetv:channel, adobetv:embed, adobetv:show, adobetv:video, AdultSwim, aenetworks, aenetworks:collection, aenetworks:show, afreecatv, AirMozilla, AliExpressLive, AlJazeera, Allocine, AlphaPorno, Amara, AMCNetworks, AmericasTestKitchen, AmericasTestKitchenSeason, anderetijden, AnimeOnDemand, Anvato, aol.com, APA, Aparat, AppleConnect, AppleDaily, ApplePodcasts, appletrailers, appletrailers:section, archive.org, ArcPublishing, ARD, ARD:mediathek, ARDBetaMediathek, Arkena, arte.sky.it, ArteTV, ArteTVEmbed, ArteTVPlaylist, AsianCrush, AsianCrushPlaylist, AtresPlayer, ATTTechChannel, ATVAt, AudiMedia, AudioBoom, audiomack, audiomack:album, AWAAN, awaan:live, awaan:season, awaan:video, AZMedien, BaiduVideo, Bandcamp, Bandcamp:album, Bandcamp:weekly, bangumi.bilibili.com, bbc, bbc.co.uk, bbc.co.uk:article, bbc.co.uk:iplayer:playlist, bbc.co.uk:playlist, BBVTV, Beatport, Beeg, BehindKink, Bellator, BellMedia, Bet, bfi:player, bfmtv, bfmtv:article, bfmtv:live, BibelTV, Bigflix, Bild, BiliBili, BilibiliAudio, BilibiliAudioAlbum, BiliBiliPlayer, BioBioChileTV, Biography, BIQLE, BitChute, BitChuteChannel, BleacherReport, BleacherReportCMS, blinkx, Bloomberg, BokeCC, BongaCams, BostonGlobe, Box, Bpb, BR, BravoTV, Break, brightcove:legacy, brightcove:new, BRMediathek, bt:article, bt:vestlendingen, BusinessInsider, BuzzFeed, BYUtv, Camdemy, CamdemyFolder, CamModels, CamTube, CamWithHer, canalc2.tv, Canalplus, Canvas, CanvasEen, CarambaTV, CarambaTVPage, CartoonNetwork, cbc.ca, cbc.ca:olympics, cbc.ca:player, cbc.ca:watch, cbc.ca:watch:video, CBS, CBSInteractive, CBSLocal, CBSLocalArticle, cbsnews, cbsnews:embed, cbsnews:livevideo, CBSSports, CCMA, CCTV, CDA, CeskaTelevize, CeskaTelevizePorady, channel9, CharlieRose, Chaturbate, Chilloutzone, chirbit, chirbit:profile, cielotv.it, Cinchcast, Cinemax, CiscoLiveSearch, CiscoLiveSession, CJSW, cliphunter, Clippit, ClipRs, Clipsyndicate, CloserToTruth, CloudflareStream, Cloudy, Clubic, Clyp, cmt.com, CNBC, CNBCVideo, CNN, CNNArticle, CNNBlogs, ComedyCentral, ComedyCentralTV, CommonMistakes, CondeNast, CONtv, Corus, Coub, Cracked, Crackle, CrooksAndLiars, crunchyroll, crunchyroll:playlist, CSpan, CtsNews, CTV, CTVNews, cu.ntv.co.jp, Culturebox, CultureUnplugged, curiositystream, curiositystream:collection, CWTV, DailyMail, dailymotion, dailymotion:playlist, dailymotion:user, daum.net, daum.net:clip, daum.net:playlist, daum.net:user, DBTV, DctpTv, DeezerPlaylist, defense.gouv.fr, democracynow, DHM, Digg, DigitallySpeaking, Digiteka, Discovery, DiscoveryGo, DiscoveryGoPlaylist, DiscoveryNetworksDe, DiscoveryVR, Disney, dlive:stream, dlive:vod, Dotsub, DouyuShow, DouyuTV, DPlay, DRBonanza, Dropbox, DrTuber, drtv, drtv:live, DTube, Dumpert, dvtv, dw, dw:article, EaglePlatform, EbaumsWorld, EchoMsk, egghead:course, egghead:lesson, ehftv, eHow, EinsUndEinsTV, Einthusan, eitb.tv, EllenTube, EllenTubePlaylist, EllenTubeVideo, ElPais, Embedly, EMPFlix, Engadget, Eporner, EroProfile, Escapist, ESPN, ESPNArticle, EsriVideo, Europa, EWETV, ExpoTV, Expressen, ExtremeTube, EyedoTV, facebook, FacebookPluginsVideo, faz.net, fc2, fc2:embed, Fczenit, filmon, filmon:channel, Filmweb, FiveThirtyEight, FiveTV, Flickr, Folketinget, FootyRoom, Formula1, FOX, FOX9, FOX9News, Foxgay, foxnews, foxnews:article, FoxSports, france2.fr:generation-what, FranceCulture, FranceInter, FranceTV, FranceTVEmbed, francetvinfo.fr, FranceTVJeunesse, FranceTVSite, Freesound, freespeech.org, FreshLive, FrontendMasters, FrontendMastersCourse, FrontendMastersLesson, FujiTVFODPlus7, Funimation, Funk, Fusion, Fux, Gaia, GameInformer, GameSpot, GameStar, Gaskrank, Gazeta, GDCVault, generic, Gfycat, GiantBomb, Giga, GlattvisionTV, Glide, Globo, GloboArticle, Go, GodTube, Golem, google:podcasts, google:podcasts:feed, GoogleDrive, Goshgay, GPUTechConf, Groupon, hbo, HearThisAt, Heise, HellPorno, Helsinki, HentaiStigma, hetklokhuis, hgtv.com:show, HiDive, HistoricFilms, history:player, history:topic, hitbox, hitbox:live, HitRecord, hketv, HornBunny, HotNewHipHop, hotstar, hotstar:playlist, Howcast, HowStuffWorks, HRTi, HRTiPlaylist, Huajiao, HuffPost, Hungama, HungamaSong, Hypem, ign.com, IGNArticle, IGNVideo, IHeartRadio, iheartradio:podcast, imdb, imdb:list, Imgur, imgur:album, imgur:gallery, Ina, Inc, IndavideoEmbed, InfoQ, Instagram, instagram:tag, instagram:user, Internazionale, InternetVideoArchive, IPrima, iqiyi, Ir90Tv, ITTF, ITV, ITVBTCC, ivi, ivi:compilation, ivideon, Iwara, Izlesene, Jamendo, JamendoAlbum, JeuxVideo, Joj, Jove, JWPlatform, Kakao, Kaltura, Kankan, Karaoketv, KarriereVideos, Katsomo, KeezMovies, Ketnet, khanacademy, khanacademy:unit, KickStarter, KinjaEmbed, KinoPoisk, KonserthusetPlay, KrasView, Ku6, KUSI, kuwo:album, kuwo:category, kuwo:chart, kuwo:mv, kuwo:singer, kuwo:song, la7.it, laola1tv, laola1tv:embed, lbry, lbry:channel, LCI, Lcp, LcpPlay, Le, Lecture2Go, Lecturio, LecturioCourse, LecturioDeCourse, LEGO, Lemonde, Lenta, LePlaylist, LetvCloud, Libsyn, life, life:embed, limelight, limelight:channel, limelight:channel_list, LineTV, linkedin:learning, linkedin:learning:course, LinuxAcademy, LiTV, LiveJournal, LiveLeak, LiveLeakEmbed, livestream, livestream:original, livestream:shortener, LnkGo, loc, LocalNews8, LoveHomePorn, lrt.lt, lynda, lynda:course, m6, mailru, mailru:music, mailru:music:search, MallTV, mangomolo:live, mangomolo:video, ManyVids, Markiza, MarkizaPage, massengeschmack.tv, MatchTV, MDR, MedalTV, media.ccc.de, media.ccc.de:lists, Medialaan, Mediaset, Mediasite, MediasiteCatalog, MediasiteNamedCatalog, Medici, megaphone.fm, Meipai, MelonVOD, META, metacafe, Metacritic, mewatch, Mgoon, MGTV, MiaoPai, minds, minds:channel, minds:group, MinistryGrid, Minoto, miomio.tv, MiTele, mixcloud, mixcloud:playlist, mixcloud:user, MLB, Mms, Mnet, MNetTV, MoeVideo, Mofosex, MofosexEmbed, Mojvideo, Morningstar, Motherless, MotherlessGroup, Motorsport, MovieClips, MovieFap, Moviezine, MovingImage, MSN, mtg, mtv, mtv.de, mtv:video, mtvjapan, mtvservices:embedded, MTVUutisetArticle, MuenchenTV, mva, mva:course, Mwave, MwaveMeetGreet, MyChannels, MySpace, MySpace:album, MySpass, Myvi, MyVidster, MyviEmbed, MyVisionTV, n-tv.de, natgeo:video, NationalGeographicTV, Naver, NBA, nba:watch, nba:watch:collection, NBAChannel, NBAEmbed, NBAWatchEmbed, NBC, NBCNews, nbcolympics, nbcolympics:stream, NBCSports, NBCSportsStream, NBCSportsVPlayer, ndr, ndr:embed, ndr:embed:base, NDTV, NerdCubedFeed, netease:album, netease:djradio, netease:mv, netease:playlist, netease:program, netease:singer, netease:song, NetPlus, Netzkino, Newgrounds, NewgroundsPlaylist, Newstube, NextMedia, NextMediaActionNews, NextTV, Nexx, NexxEmbed, nfl.com (CURRENTLY BROKEN), nfl.com:article (CURRENTLY BROKEN), NhkVod, NhkVodProgram, nhl.com, nick.com, nick.de, nickelodeon:br, nickelodeonru, nicknight, niconico, NiconicoPlaylist, Nintendo, njoy, njoy:embed, NJPWWorld, NobelPrize, NonkTube, Noovo, Normalboots, NosVideo, Nova, NovaEmbed, nowness, nowness:playlist, nowness:series, Noz, npo, npo.nl:live, npo.nl:radio, npo.nl:radio:fragment, Npr, NRK, NRKPlaylist, NRKRadioPodkast, NRKSkole, NRKTV, NRKTVDirekte, NRKTVEpisode, NRKTVEpisodes, NRKTVSeason, NRKTVSeries, NRLTV, ntv.ru, Nuvid, NYTimes, NYTimesArticle, NYTimesCooking, NZZ, ocw.mit.edu, OdaTV, Odnoklassniki, OktoberfestTV, OnDemandKorea, onet.pl, onet.tv, onet.tv:channel, OnetMVP, OnionStudios, Ooyala, OoyalaExternal, OraTV, orf:burgenland, orf:fm4, orf:fm4:story, orf:iptv, orf:kaernten, orf:noe, orf:oberoesterreich, orf:oe1, orf:oe3, orf:salzburg, orf:steiermark, orf:tirol, orf:tvthek, orf:vorarlberg, orf:wien, OsnatelTV, OutsideTV, PacktPub, PacktPubCourse, pandora.tv, ParamountNetwork, parliamentlive.tv, Patreon, pbs, PearVideo, PeerTube, People, PerformGroup, periscope, periscope:user, PhilharmonieDeParis, phoenix.de, Photobucket, Picarto, PicartoVod, Piksel, Pinkbike, Pinterest, PinterestCollection, Pladform, Platzi, PlatziCourse, play.fm, player.sky.it, PlayPlusTV, PlaysTV, Playtvak, Playvid, Playwire, pluralsight, pluralsight:course, podomatic, Pokemon, PolskieRadio, PolskieRadioCategory, Popcorntimes, PopcornTV, PornCom, PornerBros, PornHd, PornHub, PornHubPagedVideoList, PornHubUser, PornHubUserVideosUpload, Pornotube, PornoVoisines, PornoXO, PornTube, PressTV, prosiebensat1, puhutv, puhutv:serie, Puls4, Pyvideo, qqmusic, qqmusic:album, qqmusic:playlist, qqmusic:singer, qqmusic:toplist, QuantumTV, Qub, Quickline, QuicklineLive, R7, R7Article, radio.de, radiobremen, radiocanada, radiocanada:audiovideo, radiofrance, RadioJavan, Rai, RaiPlay, RaiPlayLive, RaiPlayPlaylist, RayWenderlich, RayWenderlichCourse, RBMARadio, RDS, RedBull, RedBullEmbed, RedBullTV, RedBullTVRrnContent, Reddit, RedditR, RedTube, RegioTV, RENTV, RENTVArticle, Restudy, Reuters, ReverbNation, RICE, RMCDecouverte, RockstarGames, RoosterTeeth, RottenTomatoes, Roxwel, Rozhlas, RTBF, rte, rte:radio, rtl.nl, rtl2, rtl2:you, rtl2:you:series, Rtmp, RTP, RTS, rtve.es:alacarta, rtve.es:infantil, rtve.es:live, rtve.es:television, RTVNH, RTVS, RUHD, RumbleEmbed, rutube, rutube:channel, rutube:embed, rutube:movie, rutube:person, rutube:playlist, RUTV, Ruutu, Ruv, safari, safari:api, safari:course, SAKTV, SaltTV, Sapo, savefrom.net, SBS, schooltv, screen.yahoo:search, Screencast, ScreencastOMatic, ScrippsNetworks, scrippsnetworks:watch, SCTE, SCTECourse, Seeker, SenateISVP, SendtoNews, Servus, Sexu, SeznamZpravy, SeznamZpravyArticle, Shahid, ShahidShow, Shared, ShowRoomLive, Sina, sky.it, sky:news, sky:sports, sky:sports:news, skyacademy.it, SkylineWebcams, skynewsarabia:article, skynewsarabia:video, Slideshare, SlidesLive, Slutload, Snotr, Sohu, SonyLIV, soundcloud, soundcloud:playlist, soundcloud:search, soundcloud:set, soundcloud:trackstation, soundcloud:user, SoundcloudEmbed, soundgasm, soundgasm:profile, southpark.cc.com, southpark.cc.com:español, southpark.de, southpark.nl, southparkstudios.dk, SpankBang, SpankBangPlaylist, Spankwire, Spiegel, sport.francetvinfo.fr, Sport5, SportBox, SportDeutschland, spotify, spotify:show, Spreaker, SpreakerPage, SpreakerShow, SpreakerShowPage, SpringboardPlatform, Sprout, sr:mediathek, SRGSSR, SRGSSRPlay, stanfordoc, Steam, Stitcher, StitcherShow, Streamable, streamcloud.eu, StreamCZ, StreetVoice, StretchInternet, stv:player, SunPorno, sverigesradio:episode, sverigesradio:publication, SVT, SVTPage, SVTPlay, SVTSeries, SWRMediathek, Syfy, SztvHu, t-online.de, Tagesschau, tagesschau:player, Tass, TBS, TDSLifeway, Teachable, TeachableCourse, teachertube, teachertube:user:collection, TeachingChannel, Teamcoco, TeamTreeHouse, TechTalks, techtv.mit.edu, ted, Tele13, Tele5, TeleBruxelles, Telecinco, Telegraaf, TeleMB, TeleQuebec, TeleQuebecEmission, TeleQuebecLive, TeleQuebecSquat, TeleQuebecVideo, TeleTask, Telewebion, TennisTV, TenPlay, TestURL, TF1, TFO, TheIntercept, ThePlatform, ThePlatformFeed, TheScene, TheStar, TheSun, TheWeatherChannel, ThisAmericanLife, ThisAV, ThisOldHouse, TikTok, TikTokUser (CURRENTLY BROKEN), tinypic, TMZ, TMZArticle, TNAFlix, TNAFlixNetworkEmbed, toggle, ToonGoggles, tou.tv, Toypics, ToypicsUser, TrailerAddict (CURRENTLY BROKEN), Trilulilu, Trovo, TrovoVod, TruNews, TruTV, Tube8, TubiTv, Tumblr, tunein:clip, tunein:program, tunein:shortener, tunein:station, tunein:topic, TunePk, Turbo, tv.dfb.de, TV2, tv2.hu, TV2Article, TV2DK, TV2DKBornholmPlay, TV4, TV5MondePlus, tv5unis, tv5unis:video, tv8.it, TVA, TVANouvelles, TVANouvellesArticle, TVC, TVCArticle, TVer, tvigle, tvland.com, TVN24, TVNet, TVNoe, TVNow, TVNowAnnual, TVNowNew, TVNowSeason, TVNowShow, tvp, tvp:embed, tvp:series, TVPlayer, TVPlayHome, Tweakers, TwitCasting, twitch:clips, twitch:stream, twitch:vod, TwitchCollection, TwitchVideos, TwitchVideosClips, TwitchVideosCollections, twitter, twitter:amplify, twitter:broadcast, twitter:card, udemy, udemy:course, UDNEmbed, UFCArabia, UFCTV, UKTVPlay, umg:de, UnicodeBOM, Unistra, Unity, uol.com.br, uplynk, uplynk:preplay, Urort, URPlay, USANetwork, USAToday, ustream, ustream:channel, ustudio, ustudio:embed, Varzesh3, Vbox7, VeeHD, Veoh, Vesti, Vevo, VevoPlaylist, VGTV, vh1.com, vhx:embed, Viafree, vice, vice:article, vice:show, Vidbit, Viddler, Videa, video.google:search, video.sky.it, video.sky.it:live, VideoDetective, videofy.me, videomore, videomore:season, videomore:video, VideoPress, Vidio, VidLii, vidme, vidme:user, vidme:user:likes, vier, vier:videos, viewlift, viewlift:embed, Viidea, viki, viki:channel, vimeo, vimeo:album, vimeo:channel, vimeo:group, vimeo:likes, vimeo:ondemand, vimeo:review, vimeo:user, vimeo:watchlater, Vimple, Vine, vine:user, Viqeo, Viu, viu:ott, viu:playlist, Vivo, vk, vk:uservideos, vk:wallpost, vlive, vlive:channel, vlive:post, Vodlocker, VODPl, VODPlatform, VoiceRepublic, Voot, VoxMedia, VoxMediaVolume, vpro, Vrak, VRT, VrtNU, vrv, vrv:series, VShare, VTM, VTXTV, vube, VuClip, VVVVID, VVVVIDShow, VyboryMos, Vzaar, Wakanim, Walla, WalyTV, washingtonpost, washingtonpost:article, wat.tv, WatchBox, WatchIndianPorn, WDR, wdr:mobile, WDRElefant, WDRPage, Webcaster, WebcasterFeed, WebOfStories, WebOfStoriesPlaylist, Weibo, WeiboMobile, WeiqiTV, Wistia, WistiaPlaylist, wnl, WorldStarHipHop, WSJ, WSJArticle, WWE, XBef, XboxClips, XFileShare, XHamster, XHamsterEmbed, XHamsterUser, xiami:album, xiami:artist, xiami:collection, xiami:song, ximalaya, ximalaya:album, XMinus, XNXX, Xstream, XTube, XTubeUser, Xuite, XVideos, XXXYMovies, Yahoo, yahoo:gyao, yahoo:gyao:player, yahoo:japannews, YandexDisk, yandexmusic:album, yandexmusic:artist:albums, yandexmusic:artist:tracks, yandexmusic:playlist, yandexmusic:track, YandexVideo, YapFiles, YesJapan, yinyuetai:video, Ynet, YouJizz, youku, youku:show, YouNowChannel, YouNowLive, YouNowMoment, YouPorn, YourPorn, YourUpload, youtube, youtube:favorites, youtube:history, youtube:playlist, youtube:recommended, youtube:search, youtube:search:date, youtube:subscriptions, youtube:tab, youtube:truncated_id, youtube:truncated_url, youtube:watchlater, YoutubeYtBe, YoutubeYtUser, Zapiks, Zattoo, ZattooLive, ZDF, ZDFChannel, zingmp3, Zype