Package: afni-atlases Source: afni-data Version: 0.20180120-1.1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 109419 Homepage: http://afni.nimh.nih.gov Priority: extra Section: science Filename: pool/main/a/afni-data/afni-atlases_0.20180120-1.1_all.deb Size: 98215048 SHA256: b7b30ce4345671d92cb08f939b76de42f81a6839abe3d47dba1db0620fe64e0c SHA1: 792d6506cc866acfa54fc71475f823e686f169f7 MD5sum: deaddf5e6992face9b5edeb62644187c Description: standard space brain atlases for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provide AFNI's standard space brain templates in HEAD/BRIK format. Package: arno-iptables-firewall Version: 1.9.2.k-3~squeeze.nd1 Architecture: all Maintainer: Michael Hanke Installed-Size: 844 Depends: iptables (>= 1.2.11), gawk, debconf (>= 1.3.22) | cdebconf (>= 0.43), debconf (>= 0.5) | debconf-2.0, iproute Recommends: lynx, dnsutils Homepage: http://rocky.eld.leidenuniv.nl/ Priority: optional Section: net Filename: pool/main/a/arno-iptables-firewall/arno-iptables-firewall_1.9.2.k-3~squeeze.nd1_all.deb Size: 132476 SHA256: b002efbc460e228ef300147169187793cc9cc8b36e7acf807567d35aa8d56099 SHA1: 7945add5a3b0968d8deeac27bb6d5bdf667ff03a MD5sum: ebcb9a6d4f275258f76616360ff739d0 Description: single- and multi-homed firewall script with DSL/ADSL support Unlike other lean iptables frontends in Debian, arno-iptables-firewall will setup and load a secure, restrictive firewall by just asking a few question. This includes configuring internal networks for internet access via NAT and potential network services (e.g. http or ssh). . However, it is in no way restricted to this simple setup. Some catch words of additional features, that can be enabled in the well documented configuration file are: DSL/ADSL, Port forwarding, DMZ's, portscan detection, MAC address filtering. Package: autotools-dev Version: 20100122.1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 216 Depends: neurodebian-popularity-contest Enhances: cdbs, debhelper Homepage: http://savannah.gnu.org/projects/config/ Priority: optional Section: devel Filename: pool/main/a/autotools-dev/autotools-dev_20100122.1~nd60+1_all.deb Size: 72966 SHA256: dee3f923f4e6856aac8efa5aa8c890af4466679721b9a2dd03977c7bddf0d857 SHA1: 2c2a0419c7324111348c91772971ffef898ef835 MD5sum: eab0255d3b1d7620acccb2f6e01b667e Description: Update infrastructure for config.{guess,sub} files This package installs an up-to-date version of config.guess and config.sub, used by the automake and libtool packages. It provides the canonical copy of those files for other packages as well. . It also documents in /usr/share/doc/autotools-dev/README.Debian.gz best practices and guidelines for using autoconf, automake and friends on Debian packages. This is a must-read for any developers packaging software that uses the GNU autotools, or GNU gettext. . Additionally this package provides seamless integration into Debhelper or CDBS, allowing maintainers to easily update config.{guess,sub} files in their packages. Package: bats Version: 0.4.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 44 Depends: neurodebian-popularity-contest Homepage: https://github.com/sstephenson/bats Priority: optional Section: shells Filename: pool/main/b/bats/bats_0.4.0-1~nd60+1_all.deb Size: 15364 SHA256: 1d28aa85106251f672d8bec292b93acaaecb46aaebee5247dddadaa6954a16c6 SHA1: 384c7972d6fbe0a6740e0391fba0847c28ce4125 MD5sum: d0a40a017a79302afcf5486a6549cd4b Description: bash automated testing system Bats is a TAP-compliant testing framework for Bash. It provides a simple way to verify that the UNIX programs you write behave as expected. Bats is most useful when testing software written in Bash, but you can use it to test any UNIX program. Package: btrbk Version: 0.20.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 140 Depends: neurodebian-popularity-contest, perl, libdate-calc-perl, btrfs-tools (>= 3.14) Suggests: openssh-client Homepage: http://www.digint.ch/btrbk/ Priority: optional Section: utils Filename: pool/main/b/btrbk/btrbk_0.20.0-1~nd60+1_all.deb Size: 38024 SHA256: d255d4efff5f8f557ffb1a0646351d7e6bbfecbca0a848613a78b3541ff23da8 SHA1: 44cc1197c8cd1dd0d0901876246a5f2cdd6f10bd MD5sum: 0322f4b51258c56b3dda7ec15cfb5a1d Description: backup tool for btrfs volumes Backup tool for btrfs volumes, using a configuration file, allows creation of backups from multiple sources to multiple destinations at once, with ssh and configurable retention support (daily/weekly/monthly). Package: condor-doc Source: condor Version: 7.8.8~dfsg.1-2~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 7008 Depends: neurodebian-popularity-contest Homepage: http://research.cs.wisc.edu/condor Priority: extra Section: doc Filename: pool/main/c/condor/condor-doc_7.8.8~dfsg.1-2~nd60+1_all.deb Size: 1457546 SHA256: 15866458e3408f2503101382aab880e5f7e25f9bb83a4205a24f242ea2b95c2e SHA1: 211258510ed5869de42f463f470df472b5f71d96 MD5sum: 46fc80922289b80717f2671c7c26d72d Description: distributed workload management system - documentation Like other full-featured batch systems, Condor provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Condor; Condor places them into a queue. It chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion. . Unlike more traditional batch queueing systems, Condor can also effectively harness wasted CPU power from otherwise idle desktop workstations. Condor does not require a shared file system across machines - if no shared file system is available, Condor can transfer the job's data files on behalf of the user. . This package provides Condor's documentation in HTML and PDF format, as well as configuration and other examples. Package: connectomeviewer Version: 2.0.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1884 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-cfflib (>= 2.0.5), python-networkx (>= 1.4), python-nibabel, python-numpy (>= 1.3.0), python-scipy, python-chaco, mayavi2, ipython Recommends: python-nipype, python-dipy, python-matplotlib, python-qscintilla2 Suggests: nipy-suite Homepage: http://www.connectomeviewer.org Priority: extra Section: python Filename: pool/main/c/connectomeviewer/connectomeviewer_2.0.0-1~nd60+1_all.deb Size: 1354956 SHA256: b0950f7c42d584f3476f79920cdbfcc342d10563f1b06b88acaab7263c36add6 SHA1: a713af7f9f16e3b54e22916ee6498bdaafebd798 MD5sum: 02d405b1f02ad49b4c2192af7ee48f1b Description: Interactive Analysis and Visualization for MR Connectomics The Connectome Viewer is a extensible, scriptable, pythonic research environment for visualization and (network) analysis in neuroimaging and connectomics. . Employing the Connectome File Format, diverse data types such as networks, surfaces, volumes, tracks and metadata are handled and integrated. The Connectome Viewer is part of the MR Connectome Toolkit. Package: coop-computing-tools-doc Source: cctools Version: 3.4.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2676 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://nd.edu/~ccl/software/ Priority: extra Section: doc Filename: pool/main/c/cctools/coop-computing-tools-doc_3.4.2-1~nd60+1_all.deb Size: 303978 SHA256: 02f046f23d55becc2755a8ca914586b2de0d9bf606ed29a3575b3194e7b2eb5c SHA1: 9ad253f98144263653d52f26bdf39864f45c1dd6 MD5sum: c7af39ed432c13e3360d6f131d4dcccb Description: documentation for coop-computing-tools These tools are a collection of software that help users to share resources in a complex, heterogeneous, and unreliable computing environment. . This package provides the documentation (manual and API reference) in HTML format. Package: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 224 Depends: neurodebian-popularity-contest, python3-datalad (= 0.17.5-1~nd+1), python3-argcomplete (>= 1.12.3), python3:any Suggests: datalad-container, datalad-crawler, datalad-neuroimaging Homepage: https://datalad.org Priority: optional Section: science Filename: pool/main/d/datalad/datalad_0.17.5-1~nd+1_all.deb Size: 187092 SHA256: dcfab5ab31ab85c685b4439648c3095efb236b34c92eb2f870fc1376dd0dbab1 SHA1: e8a088bc96e73f10444588eede93689410943c07 MD5sum: a4020bc221d05979fe1738d432660717 Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) Package: debhelper Version: 9.20120909~bpo60+1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1712 Depends: neurodebian-popularity-contest, perl, file (>= 3.23), dpkg-dev (>= 1.14.19), html2text, binutils, po-debconf, man-db (>= 2.5.1-1) Suggests: dh-make Conflicts: automake (<< 1.11.2), dpkg-cross (<< 1.18), python-central (<< 0.5.6), python-support (<< 0.5.3) Homepage: http://kitenet.net/~joey/code/debhelper/ Priority: optional Section: devel Filename: pool/main/d/debhelper/debhelper_9.20120909~bpo60+1~nd60+1_all.deb Size: 705144 SHA256: bbbf35433fe5c1db629d79116e208ace8d90f7673772b26cd7b230f90a620119 SHA1: 00cdf00ccaa30c36d8c311fa5ce1a8415e7b0d81 MD5sum: e3e5c4e260cbdb4c183c4bb4d4ba12c2 Description: helper programs for debian/rules A collection of programs that can be used in a debian/rules file to automate common tasks related to building debian packages. Programs are included to install various files into your package, compress files, fix file permissions, integrate your package with the debian menu system, debconf, doc-base, etc. Most debian packages use debhelper as part of their build process. Package: debian-handbook Version: 6.0+20120509~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23215 Depends: neurodebian-popularity-contest Homepage: http://debian-handbook.info Priority: optional Section: doc Filename: pool/main/d/debian-handbook/debian-handbook_6.0+20120509~nd+1_all.deb Size: 21998670 SHA256: b33f038d8363175473cc056a5f98fc7af52386a466b45d4b2e42d2f25233a3ed SHA1: 7a0b369b4548a3f4fb61aa1ef9efa2ddf2b319e2 MD5sum: 3e3d2cf990fcc5ed1ed6bdbfb5c1c3dd Description: reference book for Debian users and system administrators Accessible to all, the Debian Administrator's Handbook teaches the essentials to anyone who wants to become an effective and independent Debian GNU/Linux administrator. . It covers all the topics that a competent Linux administrator should master, from the installation and the update of the system, up to the creation of packages and the compilation of the kernel, but also monitoring, backup and migration, without forgetting advanced topics like SELinux setup to secure services, automated installations, or virtualization with Xen, KVM or LXC. . The Debian Administrator's Handbook has been written by two Debian developers — Raphaël Hertzog and Roland Mas. . This package contains the English book covering Debian 6.0 “Squeeze”. Package: debootstrap Version: 1.0.26+squeeze1+nd2 Architecture: all Maintainer: Debian Install System Team Installed-Size: 228 Depends: wget Recommends: gnupg Priority: extra Section: admin Filename: pool/main/d/debootstrap/debootstrap_1.0.26+squeeze1+nd2_all.deb Size: 57968 SHA256: a67ca5bb752abb8a685119181a8441adaf618c73c6d908d23e1d0833e5f0b46d SHA1: d0cd11357a327591e2bc76ffb8e81341231adb2f MD5sum: 482fab29e945ecd9ea88e67078bcf209 Description: Bootstrap a basic Debian system debootstrap is used to create a Debian base system from scratch, without requiring the availability of dpkg or apt. It does this by downloading .deb files from a mirror site, and carefully unpacking them into a directory which can eventually be chrooted into. Package: dh-systemd Source: init-system-helpers Version: 1.18~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 72 Depends: neurodebian-popularity-contest, perl, debhelper Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/dh-systemd_1.18~nd60+1_all.deb Size: 14624 SHA256: 519875e82455e6ca5299d49583d56d6a7caf62bce17e61fcabad2a126276de08 SHA1: 7812d504450df302939c84ab60dc55cbd5e04058 MD5sum: 4b3598fcc89f9495b51b65ca41fd17d8 Description: debhelper add-on to handle systemd unit files dh-systemd provides a debhelper sequence addon named 'systemd' and the dh_systemd_enable/dh_systemd_start commands. . The dh_systemd_enable command adds the appropriate code to the postinst, prerm and postrm maint scripts to properly enable/disable systemd service files. The dh_systemd_start command deals with start/stop/restart on upgrades for systemd-only service files. Package: eeglab11-sampledata Source: eeglab11 Version: 11.0.0.0~b~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 8144 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/e/eeglab11/eeglab11-sampledata_11.0.0.0~b~dfsg.1-1~nd60+1_all.deb Size: 7224698 SHA256: a949ef784b2c7f5ae0b5b9100560fae81c897e84e80867b8c3b8ecfad708d35a SHA1: 2b43e6ccafdcf7014cfcfaf50b0fa9b02c9b501b MD5sum: 352d3cdaa19694e929bf647167979968 Description: sample EEG data for EEGLAB tutorials EEGLAB is sofwware for processing continuous or event-related EEG or other physiological data. . This package provide some tutorial data files shipped with the EEGLAB distribution. Package: fail2ban Version: 0.8.13-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1012 Depends: neurodebian-popularity-contest, python (>= 2.6.6-3+squeeze3~), lsb-base (>= 2.0-7) Recommends: iptables, whois, python-pyinotify Suggests: python-gamin, mailx, system-log-daemon Homepage: http://www.fail2ban.org Priority: optional Section: net Filename: pool/main/f/fail2ban/fail2ban_0.8.13-1~nd60+1_all.deb Size: 185260 SHA256: 3e3af6eba8879b07f9fd6ac87c047ba17428543c122a768268f74c8e24c9374d SHA1: 8709b4675fa465a4abed703943e875fbfc9c4ebc MD5sum: 0c90a6f3d5ffe4eef3a0dbad46bf6c58 Description: ban hosts that cause multiple authentication errors Fail2ban monitors log files (e.g. /var/log/auth.log, /var/log/apache/access.log) and temporarily or persistently bans failure-prone addresses by updating existing firewall rules. Fail2ban allows easy specification of different actions to be taken such as to ban an IP using iptables or hostsdeny rules, or simply to send a notification email. . By default, it comes with filter expressions for various services (sshd, apache, qmail, proftpd, sasl etc.) but configuration can be easily extended for monitoring any other text file. All filters and actions are given in the config files, thus fail2ban can be adopted to be used with a variety of files and firewalls. Package: freeipmi Version: 1.4.9-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4 Depends: neurodebian-popularity-contest, freeipmi-common (= 1.4.9-1~nd60+1), freeipmi-tools, freeipmi-ipmidetect, freeipmi-bmc-watchdog Homepage: http://www.gnu.org/software/freeipmi/ Priority: extra Section: admin Filename: pool/main/f/freeipmi/freeipmi_1.4.9-1~nd60+1_all.deb Size: 1118 SHA256: 6562bb9fe4374ce81a0d4acfaba5309a2d1835bc7cf9620e4028bfa19e0857bd SHA1: 9956a82e71d9b14b6f2b833c610e9436c0a29f9a MD5sum: a1e6bd433da8ce9d9c82121cf999df11 Description: GNU implementation of the IPMI protocol FreeIPMI is a collection of Intelligent Platform Management IPMI system software. It provides in-band and out-of-band software and a development library conforming to the Intelligent Platform Management Interface (IPMI v1.5 and v2.0) standards. . This metapackage depends on all separate modules of freeipmi. Package: freeipmi-common Source: freeipmi Version: 1.4.9-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 548 Pre-Depends: dpkg (>= 1.15.7.2~) Depends: neurodebian-popularity-contest Suggests: freeipmi-tools Homepage: http://www.gnu.org/software/freeipmi/ Priority: extra Section: admin Filename: pool/main/f/freeipmi/freeipmi-common_1.4.9-1~nd60+1_all.deb Size: 346166 SHA256: dff9a3ccd7eeefe19e6a59bdf5b41def10104cc149b26b3bf1c989920119ed98 SHA1: 4ca23481906aee7b1d2a0aa45e411a661f2adcb3 MD5sum: 2420bbd23e6190eea20bd63147bcd3c8 Description: GNU implementation of the IPMI protocol - common files FreeIPMI is a collection of Intelligent Platform Management IPMI system software. It provides in-band and out-of-band software and a development library conforming to the Intelligent Platform Management Interface (IPMI v1.5 and v2.0) standards. . This package provides configuration used by the rest of FreeIPMI framework and generic documentation to orient the user. Package: fslview-doc Source: fslview Version: 3.1.8+4.1.9-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3124 Depends: neurodebian-popularity-contest, qt3-assistant Homepage: http://www.fmrib.ox.ac.uk/fsl/fslview Priority: optional Section: doc Filename: pool/main/f/fslview/fslview-doc_3.1.8+4.1.9-1~nd60+1_all.deb Size: 2351302 SHA256: 64c32f8bbbbbfddfc65e97d37eec4341d377874849c6e8f7f759aeae873e7a45 SHA1: 73726555ec7747f07c2bef1b77c62eb10e381e09 MD5sum: 66b10fb39b745b649ba377098763568b Description: Documentation for FSLView This package provides the online documentation for FSLView. . FSLView is part of FSL. Package: git-annex-remote-rclone Version: 0.5-1~ndall+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 23 Depends: neurodebian-popularity-contest, git-annex | git-annex-standalone, rclone Homepage: https://github.com/DanielDent/git-annex-remote-rclone Priority: optional Section: utils Filename: pool/main/g/git-annex-remote-rclone/git-annex-remote-rclone_0.5-1~ndall+1_all.deb Size: 7842 SHA256: 0b1d65c740ce1073ecdae6db121d304fe02c4bb95df552326894118a65b38319 SHA1: 34a2323c4387e61c4a69617150c463f9a7b772c5 MD5sum: 00c5a0407a998eba72d4f5eb0ad71189 Description: rclone-based git annex special remote This is a wrapper around rclone to make any destination supported by rclone usable with git-annex. . Cloud storage providers supported by rclone currently include: * Google Drive * Amazon S3 * Openstack Swift / Rackspace cloud files / Memset Memstore * Dropbox * Google Cloud Storage * Microsoft One Drive * Hubic * Backblaze B2 * Yandex Disk . Note: although Amazon Cloud Drive support is implemented, it is broken ATM see https://github.com/DanielDent/git-annex-remote-rclone/issues/22 . Package: gmsl Version: 1.1.5-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 96 Depends: neurodebian-popularity-contest, make Homepage: http://gmsl.sourceforge.net/ Priority: optional Section: devel Filename: pool/main/g/gmsl/gmsl_1.1.5-1~nd60+1_all.deb Size: 16568 SHA256: d9f7b56b7c55656403ef2f532d8953698d8a5459d9806af47ed0e8450a0db06d SHA1: 11fb06b6ef93abe8a2a45dfadf4fa9c35d3b666b MD5sum: 30a3929d230ddaa683ff206563215661 Description: extra functions to extend functionality of GNU Makefiles The GNU Make Standard Library (GMSL) is a collection of functions implemented using native GNU Make functionality that provide list and string manipulation, integer arithmetic, associative arrays, stacks, and debugging facilities. . Note that despite the name of this project, this library is NOT standard and is NOT written or distributed by the GNU project. Package: golang-github-ncw-rclone-dev Source: rclone Version: 1.41-1~ndall0 Architecture: all Maintainer: Debian Go Packaging Team Installed-Size: 2492 Depends: golang-bazil-fuse-dev, golang-github-aws-aws-sdk-go-dev, golang-github-mreiferson-go-httpclient-dev, golang-github-ncw-go-acd-dev, golang-github-ncw-swift-dev, golang-github-pkg-errors-dev, golang-github-pkg-sftp-dev, golang-github-rfjakob-eme-dev, golang-github-skratchdot-open-golang-dev, golang-github-spf13-cobra-dev, golang-github-spf13-pflag-dev, golang-github-stacktic-dropbox-dev, golang-github-stretchr-testify-dev, golang-github-tsenart-tb-dev, golang-github-unknwon-goconfig-dev, golang-github-vividcortex-ewma-dev, golang-golang-x-crypto-dev, golang-golang-x-net-dev, golang-golang-x-oauth2-google-dev, golang-golang-x-sys-dev, golang-golang-x-text-dev, golang-google-api-dev Homepage: https://github.com/ncw/rclone Priority: optional Section: devel Filename: pool/main/r/rclone/golang-github-ncw-rclone-dev_1.41-1~ndall0_all.deb Size: 399416 SHA256: 528b53f3312375d31d5cebb95472a57272cf242e14a92cfdf99c45be2ff5511d SHA1: 75f8871fd668e815023267a857b37ad60b9d1c2f MD5sum: a87865eafe10185420838e2e4ffd7b55 Description: go source code of rclone Rclone is a program to sync files and directories between the local file system and a variety of commercial cloud storage providers. . This package contains rclone's source code. Package: guacamole Version: 0.6.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 344 Depends: neurodebian-popularity-contest, guacd (>= 0.6), guacd (<< 0.7) Recommends: libguac-client-vnc0 Suggests: tomcat6 | jetty Homepage: http://guacamole.sourceforge.net/ Priority: extra Section: net Filename: pool/main/g/guacamole/guacamole_0.6.0-1~nd60+1_all.deb Size: 275606 SHA256: 0c3c73bcda15707f6e644bfbd545966312a267c7c5b8526a28f9412feb497cf9 SHA1: 86bf14641701d194201b262175e13356e46d04d7 MD5sum: d5923438677f531f5c29450191e65c75 Description: HTML5 web application for accessing remote desktops Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. Package: guacamole-tomcat Source: guacamole Version: 0.6.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 24 Depends: neurodebian-popularity-contest, debconf, guacamole, tomcat6, libguac-client-vnc0, debconf (>= 0.5) | debconf-2.0 Homepage: http://guacamole.sourceforge.net/ Priority: extra Section: net Filename: pool/main/g/guacamole/guacamole-tomcat_0.6.0-1~nd60+1_all.deb Size: 5174 SHA256: aa8acc1cb1e31f859346456991551b966c472078d0c45ee108c6dba6761791ce SHA1: 9d10b5db60de10ddf46924375abea6bb2f2acf37 MD5sum: c17c7c3a2c972ad60ae57492ecde1ffe Description: Tomcat-based Guacamole install with VNC support Guacamole is an HTML5 web application that provides access to a desktop environment using remote desktop protocols. A centralized server acts as a tunnel and proxy, allowing access to multiple desktops through a web browser. No plugins are needed: the client requires nothing more than a web browser supporting HTML5 and AJAX. . This metapackage depends on Tomcat, Guacamole, and the VNC support plugin for guacamole. Guacamole is automatically installed and configured under Tomcat. Package: impressive Version: 0.10.5-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 380 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-opengl, python-pygame, python-imaging, poppler-utils | xpdf-utils (>= 3.02-2) Recommends: pdftk, perl Suggests: ghostscript, latex-beamer Conflicts: keyjnote (<< 0.10.2r-0) Replaces: keyjnote (<< 0.10.2r-0) Provides: keyjnote Homepage: http://impressive.sourceforge.net/ Priority: optional Section: x11 Filename: pool/main/i/impressive/impressive_0.10.5-1~nd60+1_all.deb Size: 163938 SHA256: 56c372c9d0c5aa5dcea9b30f9de762b10089156da74639ce668b8124c6dae580 SHA1: b3f1671e71b1e5d39c598d2039fd8a5af163cc73 MD5sum: 9e3fa46232a2eb7f6b5d46d6bbcf5989 Description: PDF presentation tool with eye candies Impressive is a program that displays presentation slides using OpenGL. Smooth alpha-blended slide transitions are provided for the sake of eye candy, but in addition to this, Impressive offers some unique tools that are really useful for presentations. Some of them are: * Overview screen * Highlight boxes * Spotlight effect * Presentation scripting and customization Package: incf-nidash-oneclick-clients Source: incf-nidash-oneclick Version: 2.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 36 Depends: neurodebian-popularity-contest, python (>= 2.5.0), python-dicom, dcmtk, python-httplib2 Homepage: http://xnat.incf.org/ Priority: extra Section: science Filename: pool/main/i/incf-nidash-oneclick/incf-nidash-oneclick-clients_2.0-1~nd60+1_all.deb Size: 9658 SHA256: 96ba6261aa7d1a9cf5b3ade16f2dac020c3f6fd923654ec0fded0f5c750e33ce SHA1: 17f72c212959f54ca67a2ffb1692a3515c47e9c3 MD5sum: 59cf72dfd405d12887695b03ee4c2ec8 Description: utility for pushing DICOM data to the INCF datasharing server A command line utility for anonymizing and sending DICOM data to the XNAT image database at the International Neuroinformatics Coordinating Facility (INCF). This tool is maintained by the INCF NeuroImaging DataSharing (NIDASH) task force. Package: init-system-helpers Version: 1.18~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 48 Depends: neurodebian-popularity-contest, perl Breaks: systemd (<< 44-12) Multi-Arch: foreign Priority: extra Section: admin Filename: pool/main/i/init-system-helpers/init-system-helpers_1.18~nd60+1_all.deb Size: 14308 SHA256: a91d7d094e9d2b65f7a573bc2bf35864dee5be3ef0b9f7e3b4e038b57c04a26d SHA1: 58487823e062a71af1b1dfb68bea5f0ed4f6a09e MD5sum: 4e4ae1bdb6981efd04928e0d23a2d2cb Description: helper tools for all init systems This package contains helper tools that are necessary for switching between the various init systems that Debian contains (e.g. sysvinit, upstart, systemd). An example is deb-systemd-helper, a script that enables systemd unit files without depending on a running systemd. . While this package is maintained by pkg-systemd-maintainers, it is NOT specific to systemd at all. Maintainers of other init systems are welcome to include their helpers in this package. Package: ipython01x Version: 0.13.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 6060 Depends: neurodebian-popularity-contest, python-argparse, python-configobj, python-decorator, python-pexpect, python-simplegeneric, python2.6, python (>= 2.6.6-3+squeeze3~), python (<< 2.7) Recommends: python-tornado (>= 2.1.0~), python-pygments, python-qt4, python-zmq, python-matplotlib Suggests: ipython01x-doc, python-gobject, python-gtk2, python-numpy, python-profiler Conflicts: ipython-common, python2.3-ipython, python2.4-ipython Replaces: ipython-common, python2.3-ipython, python2.4-ipython Homepage: http://ipython.org/ Priority: optional Section: python Filename: pool/main/i/ipython01x/ipython01x_0.13.2-1~nd60+1_all.deb Size: 1286536 SHA256: 18b60234e9acfe4a167cb6ddbf6d13a2f8f7240b8b3ec7be56c83ff334d78eb4 SHA1: d4cfb72974175affef60917e0cccf85bd1976f0b MD5sum: 96d72542d5b0628275ef4d47f4196ec6 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This is a non-official, custom build of IPython post 0.11 with notebooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-doc Source: ipython01x Version: 0.13.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 17824 Depends: neurodebian-popularity-contest, libjs-jquery, ipython01x Homepage: http://ipython.org/ Priority: optional Section: doc Filename: pool/main/i/ipython01x/ipython01x-doc_0.13.2-1~nd60+1_all.deb Size: 7088250 SHA256: fb502aaf6dbd15d62db81c28fc1bff693e10c486a488e0b76d886fcf1af9964f SHA1: 423898db0b95ae94ddb96048c617d997fe3a44ed MD5sum: dfaf5e91d4be1f07d2dd0318f0540210 Description: enhanced interactive Python shell IPython can be used as a replacement for the standard Python shell, or it can be used as a complete working environment for scientific computing (like Matlab or Mathematica) when paired with the standard Python scientific and numerical tools. It supports dynamic object introspections, numbered input/output prompts, a macro system, session logging, session restoring, complete system shell access, verbose and colored traceback reports, auto-parentheses, auto-quoting, and is embeddable in other Python programs. . This package contains the documentation. . This is a non-official, custom build of IPython post 0.11 with workbooks support. It provides IPython01X module thus not conflicting with system-wide installed IPython Package: ipython01x-notebook Source: ipython01x Version: 0.13.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 0 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-notebook_0.13.2-1~nd60+1_all.deb Size: 896 SHA256: bbc661882f4b0d66c5ef47e8a3004a398eefac5ffef37fd72a80151dbbc507f6 SHA1: 930ec1892043e0d8a6bb9fc81410f39d29367fda MD5sum: 151a56ccb253e9679d9941967cb434f8 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships notebook functionality inside. It is made so to stay in line to modularization of official ipython package in Debian. There is no real good reason to install this package. Package: ipython01x-parallel Source: ipython01x Version: 0.13.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 0 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: oldlibs Filename: pool/main/i/ipython01x/ipython01x-parallel_0.13.2-1~nd60+1_all.deb Size: 826 SHA256: 819dd695bd7df7e4f4310b9cd26d00daba322776e105f999522113fff0dacdd5 SHA1: 86c57786905459f91d8e5766b2e520e1d09933c9 MD5sum: f5099bd2671d5602e7fbf072f83eae2d Description: enhanced interactive Python shell This is a transitional package and can be safely removed after the installation is complete. Package: ipython01x-qtconsole Source: ipython01x Version: 0.13.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 0 Depends: neurodebian-popularity-contest, ipython01x (>= 0.13.1~git33-gcfc5692-2~) Homepage: http://ipython.org/ Priority: extra Section: python Filename: pool/main/i/ipython01x/ipython01x-qtconsole_0.13.2-1~nd60+1_all.deb Size: 910 SHA256: eaaf610f600af53c8be452ec4fe65962b01811fe1c6afefef42007ca37579ee0 SHA1: 79c3e01e8f16d526cab37d77d7cc2e12b99834f3 MD5sum: 7f06ed33e2f36811525946e3851c8797 Description: enhanced interactive Python shell -- notebook dummy package This is a dummy package depending on ipython01x which ships qt console functionality inside. It is made so to stay in line to modularization of the official ipython package in Debian. There is no real good reason to install this package. Package: libeigen3-doc Source: eigen3 Version: 3.0.1-1.1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10624 Depends: neurodebian-popularity-contest, ttf-freefont, libjs-jquery Suggests: libeigen3-dev Homepage: http://eigen.tuxfamily.org Priority: extra Section: doc Filename: pool/main/e/eigen3/libeigen3-doc_3.0.1-1.1~nd60+1_all.deb Size: 2644024 SHA256: 695a17eef4aa0e2f79eca25972103ab07407d4cf73bc007b9fb28df0786b347e SHA1: 01875672385364e3b13d603cd81d900cfc1c8c9e MD5sum: d691c4890c6c1d5aeea56244134001af Description: eigen3 API docmentation Eigen 3 is a lightweight C++ template library for vector and matrix math, a.k.a. linear algebra. . This package provides the complete eigen3 API documentation in HTML format. Package: libfreenect-doc Source: libfreenect Version: 1:0.1.2+dfsg-6~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 576 Depends: neurodebian-popularity-contest Homepage: http://openkinect.org/ Priority: extra Section: doc Filename: pool/main/libf/libfreenect/libfreenect-doc_0.1.2+dfsg-6~nd60+1_all.deb Size: 88002 SHA256: 7ce4f9208a48ceda67a4206c930d4ef92f12c201f170cd2a2b673ee9bbf8f4c4 SHA1: 7f22cbd72ef2c8d52d0fece584df480966cda29a MD5sum: 00d4f8e36368a75d47c688a18db44f82 Description: library for accessing Kinect device -- documentation libfreenect is a cross-platform library that provides the necessary interfaces to activate, initialize, and communicate data with the Kinect hardware. Currently, the library supports access to RGB and depth video streams, motors, accelerometer and LED and provide binding in different languages (C++, Python...) . This library is the low level component of the OpenKinect project which is an open community of people interested in making use of the Xbox Kinect hardware with PCs and other devices. . This package contains the documentation of the API of libfreenect. Package: libisis-core-dev Source: isis Version: 0.4.7-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 344 Depends: neurodebian-popularity-contest, libisis-core0 (>= 0.4.7-1~nd60+1), libisis-core0 (<< 0.4.7-1~nd60+1.1~) Homepage: https://github.com/isis-group Priority: extra Section: libdevel Filename: pool/main/i/isis/libisis-core-dev_0.4.7-1~nd60+1_all.deb Size: 68980 SHA256: fe9df025e015264884a7553966d5d637d0be183acca87cba3bc7a4e66bbe5140 SHA1: 74106e21c7e4c06e29fe095ad5fc661e9629ede3 MD5sum: 7f0a04ccd10d5bfcef4f3b1586283416 Description: I/O framework for neuroimaging data This framework aids access of and conversion between various established neuro-imaging data formats, like Nifti, Analyze, DICOM and VISTA. ISIS is extensible with plugins to add support for additional data formats. . This package provides headers and library to develop applications with ISIS. Package: libisis-qt4-dev Source: isis Version: 0.4.7-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16 Depends: neurodebian-popularity-contest, libisis-qt4-0 (>= 0.4.7-1~nd60+1), libisis-qt4-0 (<< 0.4.7-1~nd60+1.1~), libqt4-dev Conflicts: isis-qt4-dev Homepage: https://github.com/isis-group Priority: extra Section: libdevel Filename: pool/main/i/isis/libisis-qt4-dev_0.4.7-1~nd60+1_all.deb Size: 6022 SHA256: 28e4b5db7773d9fd49e11fc68a958d37734279347da6098e99abb6c6b42e0c91 SHA1: d2680f40e063f20bd0b9a2fe8e15eea731b34237 MD5sum: bd0cf86c411a305c1064b4e84e358b08 Description: Qt4 bindings for ISIS data I/O framework (development headers) This framework aids access of and conversion between various established neuro-imaging data formats, like Nifti, Analyze, DICOM and VISTA. ISIS is extensible with plugins to add support for additional data formats. Package: libjs-underscore Source: underscore Version: 1.1.6-1+deb7u1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 104 Depends: neurodebian-popularity-contest Recommends: javascript-common, libjs-jquery Homepage: http://documentcloud.github.com/underscore/ Priority: optional Section: web Filename: pool/main/u/underscore/libjs-underscore_1.1.6-1+deb7u1~nd60+1_all.deb Size: 30984 SHA256: 97aa150c46cdcd3c76f1fbd9b3849d7aa1a61c4eb2abe85845a178cacc63dbe4 SHA1: 560469f6b586a5065bfbcd756d68169d132fca3e MD5sum: 5d98a3346511cb995b090559ac026352 Description: JavaScript's functional programming helper library Underscore is a utility-belt library for JavaScript that provides a lot of the functional programming support that you would expect in Prototype.js (or Ruby), but without extending any of the built-in JavaScript objects. It's the tie to go along with jQuery's tux. . Underscore provides 60-odd functions that support both the usual functional suspects: map, select, invoke - as well as more specialized helpers: function binding, javascript templating, deep equality testing, and so on. It delegates to built-in functions, if present, so modern browsers will use the native implementations of forEach, map, reduce, filter, every, some and indexOf. Package: libnifti-doc Source: nifticlib Version: 2.0.0-1~squeeze.nd1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1896 Homepage: http://niftilib.sourceforge.net Priority: optional Section: doc Filename: pool/main/n/nifticlib/libnifti-doc_2.0.0-1~squeeze.nd1_all.deb Size: 245414 SHA256: c421052431a49808544394d7242ddbd0437c09c001e9936fa302d29b653603d6 SHA1: 16d20e3475e20aaf39aa4df9231cb5117421d33d MD5sum: 1de8bde7f67f9fd2b7f2571ba0212457 Description: NIfTI library API documentation Niftilib is a set of i/o libraries for reading and writing files in the NIfTI-1 data format. NIfTI-1 is a binary file format for storing medical image data, e.g. magnetic resonance image (MRI) and functional MRI (fMRI) brain images. . This package provides the library API reference documentation. Package: libopenwalnut1-doc Source: openwalnut Version: 1.2.5-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 41228 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://www.openwalnut.org Priority: extra Section: doc Filename: pool/main/o/openwalnut/libopenwalnut1-doc_1.2.5-1~nd60+1_all.deb Size: 4250672 SHA256: 187d9db9af70ee2c4eed8c47e487a7b1d334f0e80b99634efb5f2569c36e7d6f SHA1: f1960a9063e1a4aaa672f01ecde74e0fba3d6c74 MD5sum: f257fecd36b6860f03e27ea4575b8c51 Description: Multi-modal medical and brain data visualization tool. OpenWalnut is a tool for multi-modal medical and brain data visualization. Its universality allows it to be easily extended and used in a large variety of application cases. It is both, a tool for the scientific user and a powerful framework for the visualization researcher. Besides others, it is able to load NIfTI data, VTK line data and RIFF-format CNT/AVR-files. OpenWalnut provides many standard visualization tools like line integral convolution (LIC), isosurface-extraction, glyph-rendering or interactive fiber-data exploration. The powerful framework of OpenWalnut allows researchers and power-users to easily extend the functionality to their specific needs. . This package contains the core API documentation of OpenWalnut. Package: libsvm-java Source: libsvm Version: 3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 48 Depends: neurodebian-popularity-contest, libsvm3-java Homepage: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ Priority: optional Section: java Filename: pool/main/libs/libsvm/libsvm-java_3.0-1~nd60+1_all.deb Size: 13482 SHA256: 747f6bbaa0672dd192c281637bd277fabe9147c7d20168f2b6fd17e20038e3de SHA1: db5548e811b699c6a300814200cf0e949dcce62f MD5sum: d984c74835cf5628722c9688890e79c3 Description: Java API to support vector machine library The functionality of the libsvm are offered in a single jar file. It includes one-class, two-class, multiclass, regression-mode, and probablistic output functionality. . This package solely provides a symbolic link from svm.jar svm3.jar. Package: libsvm3-java Source: libsvm Version: 3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 104 Depends: neurodebian-popularity-contest, gij | java-gcj-compat | java1-runtime | java2-runtime Suggests: java-virtual-machine Conflicts: libsvm2-java (<= 2.91-2) Homepage: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ Priority: optional Section: java Filename: pool/main/libs/libsvm/libsvm3-java_3.0-1~nd60+1_all.deb Size: 60470 SHA256: c987074f9d3999f640bfcb339c768614ff592d3912a0ed5612b1a7dce443057d SHA1: 3c15a635564faded13725b2e51510f4dfb8cf7cf MD5sum: 9ee4532e7ca8eb5d96ef4c8bd603a7b4 Description: Java API to support vector machine library The functionality of the libsvm are offered in a single jar file. It includes one-class, two-class, multiclass, regression-mode, and probablistic output functionality. Package: libvia-doc Source: via Version: 2.0.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1084 Depends: neurodebian-popularity-contest Homepage: http://www.cbs.mpg.de/institute/software/lipsia Priority: optional Section: doc Filename: pool/main/v/via/libvia-doc_2.0.4-2~nd60+1_all.deb Size: 115734 SHA256: 91c80bb11eb66c49556d0406b465a4a14585c487049c208e10d38bbc0236fb32 SHA1: 420196944169b914df4234754a5e361bf8f5c6df MD5sum: 74cad029d3563ea0883f26c18cebde66 Description: VIA library API documentation VIA is a volumetric image analysis suite. The included libraries provide about 70 image analysis functions. . This package provides the library API reference documentation. Package: lipsia-doc Source: lipsia Version: 1.6.0-4~squeeze.nd1 Architecture: all Maintainer: Michael Hanke Installed-Size: 7004 Homepage: http://www.cbs.mpg.de/institute/software/lipsia Priority: optional Section: doc Filename: pool/main/l/lipsia/lipsia-doc_1.6.0-4~squeeze.nd1_all.deb Size: 5539242 SHA256: 698077dd0ec212ab7db8d81fb1ea253fde3176d0817184edf9cc35f1b634be0b SHA1: 9370ec74bf24fddf9143bc0556f7f3535560b929 MD5sum: 5d38c0c06db5d46971b92e261ab545db Description: documentation for LIPSIA Leipzig Image Processing and Statistical Inference Algorithms (LIPSIA) . This package provides the LIPSIA documentation in HTML format. Package: matlab-support-dev Source: matlab-support Version: 0.0.19~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16 Depends: neurodebian-popularity-contest Conflicts: matlab-dev (<= 0.0.14~) Replaces: matlab-dev (<= 0.0.14~) Priority: optional Section: devel Filename: pool/main/m/matlab-support/matlab-support-dev_0.0.19~nd60+1_all.deb Size: 7222 SHA256: b67c492f0bb5c4d3c75c6729728eaf55f9d641237dc4d75da000e8a92b5b9b07 SHA1: aceb6fafd86b1e5cc970cb70922703113955c2ab MD5sum: f1ffbef6c307c70e72e532a47d23bf97 Description: helpers for packages building MATLAB toolboxes This package provides a Makefile snippet (analogous to the one used for Octave) that configures the locations for architecture independent M-files, binary MEX-extensions, and their corresponding sources. This package can be used as a build-dependency by other packages shipping MATLAB toolboxes. Package: mricron-data Source: mricron Version: 0.20130828.1~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1852 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: science Filename: pool/main/m/mricron/mricron-data_0.20130828.1~dfsg.1-1~nd60+1_all.deb Size: 1667340 SHA256: d6f8ad195cc0ed772ca763f076869e868067c4d0b924f573a603b41b9549b555 SHA1: 271afd3816df93970f41f1a64394246d95f59ba3 MD5sum: ffa3cce812b3a006cf14f7d3febdf6f2 Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides data files for MRIcron, such as brain atlases, anatomy, and color schemes. Package: mricron-doc Source: mricron Version: 0.20130828.1~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1220 Depends: neurodebian-popularity-contest Homepage: http://www.cabiatl.com/mricro/mricron/index.html Priority: extra Section: doc Filename: pool/main/m/mricron/mricron-doc_0.20130828.1~dfsg.1-1~nd60+1_all.deb Size: 739926 SHA256: 896c97607ad1b172ee8869c36f3bf1e75802a3acfb93ae28e640fdc7fe203179 SHA1: 53a00730f294ffad6736597d6a3dad68a398e773 MD5sum: 8d4536933023705926ce96394e160ebd Description: data files for MRIcron This is a GUI-based visualization and analysis tool for (functional) magnetic resonance imaging. MRIcron can be used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images. Moreover, it aids drawing anatomical regions-of-interest (ROI), or lesion mapping, as well as basic analysis of functional timeseries (e.g. creating plots of peristimulus signal-change). . This package provides documentation for MRIcron in HTML format. Package: mrtrix-doc Source: mrtrix Version: 0.2.12-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 3740 Depends: neurodebian-popularity-contest Homepage: http://www.brain.org.au/software/mrtrix Priority: extra Section: doc Filename: pool/main/m/mrtrix/mrtrix-doc_0.2.12-1~nd60+1_all.deb Size: 3323486 SHA256: f7b9e905cc93eb3a1a26b92f47094648dcea134c277fd3f3e3674b1ccf2e3216 SHA1: 10103aaf72809249a73dbec24a4555f01b14ef1c MD5sum: bc2939c756c84aa015fa6e19c561d078 Description: documentation for mrtrix Set of tools to perform diffusion-weighted MRI white matter tractography of the brain in the presence of crossing fibres, using Constrained Spherical Deconvolution, and a probabilisitic streamlines algorithm. Magnetic resonance images in DICOM, ANALYZE, or uncompressed NIfTI format are supported. . This package provides the documentation in HTML format. Package: netselect-apt Source: netselect Version: 0.3.ds1-25~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 36 Depends: neurodebian-popularity-contest, wget, netselect (>= 0.3.ds1-17) Recommends: curl Suggests: dpkg-dev Enhances: apt Homepage: http://github.com/apenwarr/netselect Priority: optional Section: net Filename: pool/main/n/netselect/netselect-apt_0.3.ds1-25~nd60+1_all.deb Size: 17844 SHA256: bbf1c52964cfd2a20ec42e23c6a8f355f2cee3909e799ed44dcdd47a6c4e941d SHA1: 3640b02b564e47ee13fb0ada9197fe2a7cc799d6 MD5sum: 1552a06b0e165126235ccd5a13e13111 Description: speed tester for choosing a fast Debian mirror This package provides a utility that can choose the best Debian mirror by downloading the full mirror list and using netselect to find the fastest/closest one. . It can output a sources.list(5) file that can be used with package management tools such as apt or aptitude. Package: neurodebian Version: 0.37.2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 88 Depends: python, wget, neurodebian-archive-keyring, debconf (>= 0.5) | debconf-2.0 Recommends: netselect Suggests: neurodebian-desktop, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian_0.37.2~nd60+1_all.deb Size: 32778 SHA256: 5c67ea15bf550df85fdef99728ddf5fee8b484fb068722cbf6a5b094cdef95d6 SHA1: 7236d201fdc293f2fd7ecea3c895ddd6effb3a25 MD5sum: bb0802fab6bcf02af40d37ea1b466d81 Description: neuroscience-oriented distribution - repository configuration The NeuroDebian project integrates and maintains a variety of software projects within Debian that are useful for neuroscience (such as AFNI, FSL, PsychoPy, etc.) or generic computation (such as HTCondor, pandas, etc.). . This package enables the NeuroDebian repository on top of a standard Debian or Ubuntu system. Package: neurodebian-archive-keyring Source: neurodebian Version: 0.37.2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 24 Breaks: neurodebian-keyring (<< 0.34~) Replaces: neurodebian-keyring (<< 0.34~) Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-archive-keyring_0.37.2~nd60+1_all.deb Size: 10316 SHA256: 8ed823f54639277b4a1ae666fa0ee1022a30cbe9c208bc14e957629fe15ea7e3 SHA1: bad5df06579814e70f5b86f3cf1910c0d6b30809 MD5sum: f067add0b4289087f602f7998ce25470 Description: neuroscience-oriented distribution - GnuPG archive keys The NeuroDebian project integrates and maintains a variety of software projects within Debian that are useful for neuroscience (such as AFNI, FSL, PsychoPy, etc.) or generic computation (such as HTCondor, pandas, etc.). . The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-desktop Source: neurodebian Version: 0.37.2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 284 Depends: ssh-askpass-gnome | ssh-askpass, desktop-base, adwaita-icon-theme | gnome-icon-theme, neurodebian-popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-desktop_0.37.2~nd60+1_all.deb Size: 118324 SHA256: 4a6be72c8d755db8ab9a38bf092b069d7145507f2611841e83c960be7637b59c SHA1: b65812b1444b957d713cf817b694e1e6c42b0f8c MD5sum: 65ce0902eed0f080be53ed49e6a79945 Description: neuroscience-oriented distribution - desktop integration The NeuroDebian project integrates and maintains a variety of software projects within Debian that are useful for neuroscience (such as AFNI, FSL, PsychoPy, etc.) or generic computation (such as HTCondor, pandas, etc.). . This package provides NeuroDebian artwork (icons, background image) and a NeuroDebian menu featuring the most popular neuroscience tools, which will be automatically installed upon initial invocation. Package: neurodebian-dev Source: neurodebian Version: 0.37.2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 160 Depends: devscripts, neurodebian-archive-keyring Recommends: python, zerofree, moreutils, time, ubuntu-keyring, debian-archive-keyring, apt-utils, cowbuilder Suggests: virtualbox-ose, virtualbox-ose-fuse Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-dev_0.37.2~nd60+1_all.deb Size: 35574 SHA256: 4d977e23602f4d5265c935bd9adad21b977948a19b501e729aa3b240ab622bb6 SHA1: e59e071d3382e8ca4da222352e6f43a76756d0db MD5sum: 8f49cb315b7eaeb579c860b5e74ec69f Description: neuroscience-oriented distribution - development tools The NeuroDebian project integrates and maintains a variety of software projects within Debian that are useful for neuroscience (such as AFNI, FSL, PsychoPy, etc.) or generic computation (such as HTCondor, pandas, etc.). . This package provides sources and development tools used by NeuroDebian to provide backports for a range of Debian/Ubuntu releases. Package: neurodebian-guest-additions Source: neurodebian Version: 0.32~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 148 Pre-Depends: virtualbox-ose-guest-utils, virtualbox-ose-guest-x11, virtualbox-ose-guest-dkms Depends: sudo, neurodebian-desktop, gdm | lightdm, zenity Recommends: chromium-browser, update-manager-gnome, update-notifier Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-guest-additions_0.32~nd60+1_all.deb Size: 15364 SHA256: 8b60186315cf6bc08a34fe494b3bbd5d9fdd1c9cd3e834d0ff3fe6b888b5c7f6 SHA1: 87d6f3cdebd6b66d7964256bc94726f010252244 MD5sum: dca579a45bfbb6606f525db6583d6021 Description: NeuroDebian guest additions (DO NOT INSTALL OUTSIDE VIRTUALBOX) This package configures a Debian installation as a guest operating system in a VirtualBox-based virtual machine for NeuroDebian. . DO NOT install this package unless you know what you are doing! For example, installation of this package relaxes several security mechanisms. Package: neurodebian-keyring Source: neurodebian Version: 0.32~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 20 Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-keyring_0.32~nd60+1_all.deb Size: 7626 SHA256: c51b91a5ba0f2160b45054e95b56acf994a7283a2e8351f94a06609ed7e4c267 SHA1: 01d7477fb66581639d4080af0e61493af6bbe891 MD5sum: 2b8df8077e84901f8c0da8534006e437 Description: GnuPG archive keys of the NeuroDebian archive The NeuroDebian project digitally signs its Release files. This package contains the archive keys used for that. Package: neurodebian-popularity-contest Source: neurodebian Version: 0.37.2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 28 Depends: popularity-contest Homepage: http://neuro.debian.net Priority: optional Section: science Filename: pool/main/n/neurodebian/neurodebian-popularity-contest_0.37.2~nd60+1_all.deb Size: 12356 SHA256: 0a0950b2014100497a85531b75ad996501f55cf2041c8126b975547ab4e5737d SHA1: 325072af02f7143b5b2f2a93426babd951f00464 MD5sum: 13383f355524551dea82d00c8f6044d6 Description: neuroscience-oriented distribution - popcon integration The NeuroDebian project integrates and maintains a variety of software projects within Debian that are useful for neuroscience (such as AFNI, FSL, PsychoPy, etc.) or generic computation (such as HTCondor, pandas, etc.). . This package is a complement to the generic popularity-contest package to enable anonymous submission of usage statistics to NeuroDebian in addition to the popcon submissions to the underlying distribution (either Debian or Ubuntu) popcon server. . Participating in popcon is important for the following reasons: * Popular packages receive more attention from developers; bugs are fixed faster and updates are provided quicker. * It ensures that support is not dropped for a previous release of Debian or Ubuntu while there are active users. * User statistics may be useful for upstream research software developers seeking funding for continued development. . This requires that popcon is activated for the underlying distribution (Debian or Ubuntu), which can be achieved by running "dpkg-reconfigure popularity-contest" as root. Package: nifti2dicom-data Source: nifti2dicom Version: 0.4.7-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 648 Depends: neurodebian-popularity-contest Homepage: https://github.com/biolab-unige/nifti2dicom Priority: optional Section: science Filename: pool/main/n/nifti2dicom/nifti2dicom-data_0.4.7-1~nd60+1_all.deb Size: 614876 SHA256: 04d06c22d3901f894ed39bf2b3ea28cc941193ee285f6f190edd061703c4e9e9 SHA1: 65ec74084d94a23ecb1387cbc9a07e70549675c8 MD5sum: e106195c34f11b3212b0ee775414b149 Description: data files for nifti2dicom This package contains architecture-independent supporting data files required for use with nifti2dicom, such as such as documentation, icons, and translations. Package: nipy-suite Version: 0.1.0-2 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 36 Depends: python-nibabel (>= 1.0.0), python-nipy (>= 0.1.2+20110114), python-dipy (>= 0.5.0), python-nipype (>= 0.3.3), python-nitime (>= 0.2) Suggests: python-mvpa, psychopy Homepage: http://www.nipy.org Priority: extra Section: python Filename: pool/main/n/nipy-suite/nipy-suite_0.1.0-2_all.deb Size: 3898 SHA256: 882c8580ebd2d458a92f8d851d1ec9291fecf05f6ed98a8b754eb831c95368c8 SHA1: 6501d1d201160520f5aad29d0f9007c17b7d9778 MD5sum: eb090e568264d2f439892bcb98485b8c Description: Neuroimaging in Python NiPy is a comprehensive suite of Python modules to perform analysis of Neuroimaging data in Python. nipy-suite is a metapackage depending on the projects developed under NiPy project umbrella, such as - nibabel: bindings to various neuroimaging data formats - nipy: analysis of structural and functional neuroimaging data - nitime: timeseries analysis - dipy: analysis of MR diffusion imaging data - nipype: pipelines and worfklows Package: nipy-suite-doc Source: nipy-suite Version: 0.1.0-2 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 32 Depends: python-nibabel-doc (>= 1.0.0), python-nipy-doc (>= 0.1.2+20110114), python-dipy-doc (>= 0.5.0), python-nipype-doc (>= 0.3.3), python-nitime-doc (>= 0.2) Suggests: python-mvpa-doc Homepage: http://www.nipy.org Priority: extra Section: doc Filename: pool/main/n/nipy-suite/nipy-suite-doc_0.1.0-2_all.deb Size: 2250 SHA256: 54985bd9d6eaa352608b357f2deeb066bd2ac12d3c2e463082f5d9178701bbad SHA1: 5d2f5e94ff6b7ff737fe966f4a2e5ff67df93cca MD5sum: 37d2f8b6b6d203edf208afb0cdb56fa3 Description: Neuroimaging in Python -- documentation NiPy is a comprehensive suite of Python modules to perform analysis of Neuroimaging data in Python. . nipy-suite-doc is a metapackage depending on the documentation packages for NiPy projects. Package: nuitka Version: 0.5.14+ds-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2956 Depends: neurodebian-popularity-contest, g++-4.9 | g++-4.8 | g++-4.7 | g++-4.6 (>= 4.6.1) | g++-4.5 | g++-4.4 | clang (>= 3.0), scons (>= 2.0.0), python-dev (>= 2.6.6-2), python (>= 2.6.6-3+squeeze3~) Recommends: python-lxml (>= 2.3), python-qt4 (>= 4.8.6), strace Suggests: ccache Homepage: http://nuitka.net Priority: optional Section: python Filename: pool/main/n/nuitka/nuitka_0.5.14+ds-1~nd60+1_all.deb Size: 653506 SHA256: 34d6c3ff785463f860b7bc876fa2a8f178acd8047ff763ddde977b2ee65fe598 SHA1: 388278605336d4e1b9100463652fd5e0cec53dcc MD5sum: 8fe0fd7a345eff8a7f59b0a69fb06782 Description: Python compiler with full language support and CPython compatibility This Python compiler achieves full language compatibility and compiles Python code into compiled objects that are not second class at all. Instead they can be used in the same way as pure Python objects. Package: openelectrophy Version: 0.0.svn143-1~squeeze.nd1 Architecture: all Maintainer: Experimental Psychology Maintainers Installed-Size: 92 Depends: python, python-pyssdh (= 0.0.svn143-1~squeeze.nd1) Homepage: http://neuralensemble.org/trac/OpenElectrophy Priority: extra Section: science Filename: pool/main/o/openelectrophy/openelectrophy_0.0.svn143-1~squeeze.nd1_all.deb Size: 34368 SHA256: d3c29b416792bf1d8ca68eb2af7da3b0d60a8f0d836fa9d1d3b83cdd9329b878 SHA1: 1f8d2aca09d37c8e5efb01093a0e10909a862e38 MD5sum: 78bfb172b4686b3985ab9ee42929d028 Description: data analysis framework for intra- and extra-cellular recordings This software aims to simplify data and analysis sharing for intra- and extra-cellular recordings. It supports time frequency plots, spike detection, spike rate calculation, and analysis of phase locked signals. . Data handling and storage utilizes a MySQL database, allowing to handle large amounts of data easily and efficiently. Therefore, a MySQL server running locally or on a remote machine is required. . This package provides the OpenElectrophy GUI. Package: opensesame Version: 0.27.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 27860 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-qt4, python-pygame (>= 1.8.1~), python-numpy (>= 1.3.0~), python-qscintilla2, gnome-icon-theme Recommends: python-serial (>= 2.3~), psychopy (>= 1.64.0), python-pyaudio (>= 0.2.4), python-imaging (>= 1.1.7), python-opengl (>= 3.0.1), expyriment (>= 0.5.2), ipython-qtconsole (>= 0.12), python-markdown Homepage: http://www.cogsci.nl/software/opensesame Priority: extra Section: science Filename: pool/main/o/opensesame/opensesame_0.27.4-2~nd60+1_all.deb Size: 25359350 SHA256: dbba687153ba896d7482fb34ddadc3ca406054482a3e51c1c1064df44592b50e SHA1: 4b4c620aa8d6d9a8062478242047ddae61cf52c3 MD5sum: 7263dad24d4c99c446242c5641ff039e Description: graphical experiment builder for the social sciences This graphical environment provides an easy to use, point-and-click interface for creating psychological experiments. In addition to a powerful sketchpad for creating visual stimuli, OpenSesame features a sampler and synthesizer for sound playback. For more complex tasks, OpenSesame supports Python scripting using the built-in editor with syntax highlighting. Package: packaging-tutorial Version: 0.8~nd0 Architecture: all Maintainer: Lucas Nussbaum Installed-Size: 1550 Priority: extra Section: doc Filename: pool/main/p/packaging-tutorial/packaging-tutorial_0.8~nd0_all.deb Size: 1488332 SHA256: 491bc5917f698fee06888998e8a295a6caac2950148bb160b457aff72437eadb SHA1: c5d75d04b01f681ead660ce8d8fe068ab887fba0 MD5sum: 8fbf7c362fd4091a78c50404eb694402 Description: introduction to Debian packaging This tutorial is an introduction to Debian packaging. It teaches prospective developers how to modify existing packages, how to create their own packages, and how to interact with the Debian community. In addition to the main tutorial, it includes three practical sessions on modifying the 'grep' package, and packaging the 'gnujump' game and a Java library. Package: psychopy Version: 1.77.02.dfsg-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10420 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-pyglet | python-pygame, python-opengl, python-numpy, python-scipy, python-matplotlib, python-lxml, python-configobj Recommends: python-wxgtk2.8, python-pyglet, python-pygame, python-openpyxl, python-imaging, python-serial, python-pyo, libavbin0, libxxf86vm1, ipython Suggests: python-iolabs, python-pyxid Homepage: http://www.psychopy.org Priority: optional Section: science Filename: pool/main/p/psychopy/psychopy_1.77.02.dfsg-1~nd60+1_all.deb Size: 5822214 SHA256: cc90ee0d7e61f8ee47ceb0f7953f75b88e5d16027c287b8602cde447e22dffe0 SHA1: 338052015be649534fde26069a9307f7ae608936 MD5sum: ec0693d16907dcbe41334dc688b477f8 Description: environment for creating psychology stimuli in Python PsychoPy provides an environment for creating psychology stimuli using Python scripting language. It combines the graphical strengths of OpenGL with easy Python syntax to give psychophysics a free and simple stimulus presentation and control package. . The goal is to provide, for the busy scientist, tools to control timing and windowing and a simple set of pre-packaged stimuli and methods. PsychoPy features . - IDE GUI for coding in a powerful scripting language (Python) - Builder GUI for rapid development of stimulation sequences - Use of hardware-accelerated graphics (OpenGL) - Integration with Spectrascan PR650 for easy monitor calibration - Simple routines for staircase and constant stimuli experimental methods as well as curve-fitting and bootstrapping - Simple (or complex) GUIs via wxPython - Easy interfaces to joysticks, mice, sound cards etc. via PyGame - Video playback (MPG, DivX, AVI, QuickTime, etc.) as stimuli Python-Version: 2.5, 2.6 Package: psychtoolbox-3-common Source: psychtoolbox-3 Version: 3.0.11.20140816.dfsg1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 66416 Depends: neurodebian-popularity-contest Recommends: subversion Suggests: gnuplot Homepage: http://psychtoolbox.org Priority: extra Section: science Filename: pool/main/p/psychtoolbox-3/psychtoolbox-3-common_3.0.11.20140816.dfsg1-1~nd60+1_all.deb Size: 24807828 SHA256: e39c335c5e79de49d6cf30694e83c0559411bddb03f8faec0f540ab17f9acf9c SHA1: 20a146a2da7bab397f1a4d19c8f0ea19d59ae3ea MD5sum: 0e363156f5cdee286d9c528524534317 Description: toolbox for vision research -- arch/interpreter independent part Psychophysics Toolbox Version 3 (PTB-3) is a free set of Matlab and GNU/Octave functions for vision research. It makes it easy to synthesize and show accurately controlled visual and auditory stimuli and interact with the observer. . The Psychophysics Toolbox interfaces between Matlab or Octave and the computer hardware. The Psychtoolbox's core routines provide access to the display frame buffer and color lookup table, allow synchronization with the vertical retrace, support millisecond timing, allow access to OpenGL commands, and facilitate the collection of observer responses. Ancillary routines support common needs like color space transformations and the QUEST threshold seeking algorithm. . This package contains architecture independent files (such as .m scripts) Package: python-brian Source: brian Version: 1.4.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2928 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-brian-lib (>= 1.4.1-1~nd60+1), python-matplotlib (>= 0.90.1), python-numpy (>= 1.3.0), python-scipy (>= 0.7.0) Recommends: python-sympy Suggests: python-brian-doc, python-nose, python-cherrypy Homepage: http://www.briansimulator.org/ Priority: extra Section: python Filename: pool/main/b/brian/python-brian_1.4.1-1~nd60+1_all.deb Size: 549150 SHA256: 7bfcb7a7985cf0dfe9275f740e787da4d8e85ee7ba6efe2eb371a8687a87edac SHA1: e9ef9680ee45d34ce69580f27624acb3c68054dc MD5sum: 5323660aed6390b4afe8a2796faf81be Description: simulator for spiking neural networks Brian is a clock-driven simulator for spiking neural networks. It is designed with an emphasis on flexibility and extensibility, for rapid development and refinement of neural models. Neuron models are specified by sets of user-specified differential equations, threshold conditions and reset conditions (given as strings). The focus is primarily on networks of single compartment neuron models (e.g. leaky integrate-and-fire or Hodgkin-Huxley type neurons). Features include: - a system for specifying quantities with physical dimensions - exact numerical integration for linear differential equations - Euler, Runge-Kutta and exponential Euler integration for nonlinear differential equations - synaptic connections with delays - short-term and long-term plasticity (spike-timing dependent plasticity) - a library of standard model components, including integrate-and-fire equations, synapses and ionic currents - a toolbox for automatically fitting spiking neuron models to electrophysiological recordings Package: python-brian-doc Source: brian Version: 1.4.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7944 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-brian Homepage: http://www.briansimulator.org/ Priority: extra Section: doc Filename: pool/main/b/brian/python-brian-doc_1.4.1-1~nd60+1_all.deb Size: 2229610 SHA256: 5b0b176d0cafcce11f2e11bd15f189ca65b4730c3a054b262240cd0297a9c4a5 SHA1: eda2074d4587d6e745bb99707b58e53bbdaf4b9d MD5sum: 025068ffaaff9e9a217fcae36ae17866 Description: simulator for spiking neural networks - documentation Brian is a clock-driven simulator for spiking neural networks. . This package provides user's manual (in HTML format), examples and demos. Package: python-cfflib Source: cfflib Version: 2.0.5-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 768 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-lxml, python-numpy, python-networkx (>= 1.4), python-nibabel (>= 1.1.0) Recommends: python-nose, python-sphinx, python-tables, python-h5py Provides: python2.6-cfflib Homepage: http://cmtk.org/cfflib Priority: extra Section: python Filename: pool/main/c/cfflib/python-cfflib_2.0.5-1~nd60+1_all.deb Size: 217692 SHA256: 89c8c15b49c321ab86c69d97c6eb00eb731b2bd699c40e38dc56f8eae505412c SHA1: 6bf2302a69863a6985783df190603edfb88b7417 MD5sum: 68cfd02459ffb3eca1787a8a7bb959d2 Description: Multi-modal connectome and metadata management and integration The Connectome File Format Library (cfflib) is a Python module for multi-modal neuroimaging connectome data and metadata management and integration. . It enables single subject and multi-subject data integration for a variety of modalities, such as networks, surfaces, volumes, fiber tracks, timeseries, scripts, arbitrary data objects such as homogeneous arrays or CSV/JSON files. It relies on existing Python modules and the standard library for basic data I/O, and adds a layer of metadata annotation as tags or with structured properties to individual data objects. Package: python-dicom Source: pydicom Version: 0.9.9-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1816 Depends: neurodebian-popularity-contest, python2.6, python (>= 2.6.6-3+squeeze3~), python (<< 2.7) Recommends: python-numpy, python-imaging Suggests: python-matplotlib Homepage: http://pydicom.org/ Priority: optional Section: python Filename: pool/main/p/pydicom/python-dicom_0.9.9-1~nd60+1_all.deb Size: 427630 SHA256: 1d8a7007b174a70b48edf61fdb8209d3f2450dd873ee5c71e68ebd6fdcfcdfc5 SHA1: 9841180dba813902005164e64bdf8e2bbeac3687 MD5sum: 793dcc6ac823d83ef034f184a3187d27 Description: DICOM medical file reading and writing pydicom is a pure Python module for parsing DICOM files. DICOM is a standard (http://medical.nema.org) for communicating medical images and related information such as reports and radiotherapy objects. . pydicom makes it easy to read DICOM files into natural pythonic structures for easy manipulation. Modified datasets can be written again to DICOM format files. Package: python-dipy Source: dipy Version: 0.6.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2664 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy, python-scipy, python-dipy-lib (>= 0.6.0-1~nd60+1) Recommends: python-matplotlib, python-vtk, python-nose, python-nibabel, python-tables Suggests: ipython Provides: python2.5-dipy, python2.6-dipy Homepage: http://nipy.org/dipy Priority: extra Section: python Filename: pool/main/d/dipy/python-dipy_0.6.0-1~nd60+1_all.deb Size: 1588110 SHA256: 9eb8d1bab0a1ee3ae5ac4dfce7c5875f89953ee2e99ef5ca821dbb34fd56fa29 SHA1: 69f387ac620dc18a0d16b3e1bdffd3a29918e01a MD5sum: b1f0d0ee2604ea32c7198147f69e37da Description: toolbox for analysis of MR diffusion imaging data Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. It features: - Reconstruction algorithms, e.g. GQI, DTI - Tractography generation algorithms, e.g. EuDX - Intelligent downsampling of tracks - Ultra fast tractography clustering - Resampling datasets with anisotropic voxels to isotropic - Visualizing multiple brains simultaneously - Finding track correspondence between different brains - Warping tractographies into another space, e.g. MNI space - Reading many different file formats, e.g. Trackvis or NIfTI - Dealing with huge tractographies without memory restrictions - Playing with datasets interactively without storing Python-Version: 2.5, 2.6 Package: python-dipy-doc Source: dipy Version: 0.6.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5292 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-dipy Homepage: http://nipy.org/dipy Priority: extra Section: doc Filename: pool/main/d/dipy/python-dipy-doc_0.6.0-1~nd60+1_all.deb Size: 3590516 SHA256: 2197f8d32ff57b0e06f0139fc5c5ca9b74600fbaa7b88599436561980dd7dc5a SHA1: 9b9f5d025b20f58f0322befc29bad82c52d4e841 MD5sum: 8f9c00905cccb1bcebcb1570f18a03f9 Description: toolbox for analysis of MR diffusion imaging data -- documentation Dipy is a toolbox for the analysis of diffusion magnetic resonance imaging data. . This package provides the documentation in HTML format. Package: python-joblib Source: joblib Version: 0.7.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 264 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Recommends: python-numpy, python-nose, python-simplejson Homepage: http://packages.python.org/joblib/ Priority: optional Section: python Filename: pool/main/j/joblib/python-joblib_0.7.1-1~nd60+1_all.deb Size: 54814 SHA256: 1aa1f1bfbc60a8f6461b66885a24c3b145f40236b728277e16e14b83e860218b SHA1: d1b33d5a7e11043a6e66e4d16a3f6e7682ddebab MD5sum: 81c39210727753d7f3bc7bfdd43b97c7 Description: tools to provide lightweight pipelining in Python Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: - transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - easy simple parallel computing - logging and tracing of the execution . Joblib is optimized to be fast and robust in particular on large, long-running functions and has specific optimizations for numpy arrays. Package: python-lazyarray Source: lazyarray Version: 0.1.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 40 Depends: neurodebian-popularity-contest, python2.6 | python2.5, python (>= 2.6.6-3+squeeze3~), python (<< 2.7), python-numpy Homepage: http://bitbucket.org/apdavison/lazyarray/ Priority: optional Section: python Filename: pool/main/l/lazyarray/python-lazyarray_0.1.0-1~nd60+1_all.deb Size: 7430 SHA256: 4add14c7519849f9f98eba7976f7389e162a5cd8d03e6bc778c64a42536fa109 SHA1: 89e6fc5f690f0797b4cee2e135c7ee0a21ea8187 MD5sum: ef8002ce29ca25685369e74069640fc1 Description: Python module providing a NumPy-compatible lazily-evaluated array The 'larray' class is a NumPy-compatible numerical array where operations on the array (potentially including array construction) are not performed immediately, but are delayed until evaluation is specifically requested. Evaluation of only parts of the array is also possible. Consequently, use of an 'larray' can potentially save considerable computation time and memory in cases where arrays are used conditionally, or only parts of an array are used (for example in distributed computation, in which each MPI node operates on a subset of the elements of the array). Package: python-mdp Source: mdp Version: 3.3+git19-g4ec2f29-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1940 Depends: neurodebian-popularity-contest, python2.6 | python2.5, python (>= 2.6.6-3+squeeze3~), python (<< 2.7), python-numpy Recommends: python-scipy, python-libsvm, python-joblib, python-scikits-learn | python-sklearn, python-pp Suggests: python-py, shogun-python-modular Enhances: python-mvpa Homepage: http://mdp-toolkit.sourceforge.net/ Priority: optional Section: python Filename: pool/main/m/mdp/python-mdp_3.3+git19-g4ec2f29-1~nd60+1_all.deb Size: 501462 SHA256: 3cb46bf1ce42ed66b19d971e872102cb74cfe13f719baf5282478d4b4ce96f19 SHA1: 5ebc34c09d5bb043b561a10806ed65548131a71d MD5sum: 2c59bf734be38d2489b1da223f0a4675 Description: Modular toolkit for Data Processing Python data processing framework for building complex data processing software by combining widely used machine learning algorithms into pipelines and networks. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), and Gaussian Classifiers. . This package contains MDP for Python 2. Package: python-mlpy Source: mlpy Version: 2.2.0~dfsg1-1~squeeze.nd1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 428 Depends: python (>= 2.4), python-support (>= 0.90.0), python2.6, python-numpy, python-mlpy-lib (>= 2.2.0~dfsg1-1~squeeze.nd1) Suggests: python-mvpa Provides: python2.5-mlpy, python2.6-mlpy Homepage: https://mlpy.fbk.eu/ Priority: optional Section: python Filename: pool/main/m/mlpy/python-mlpy_2.2.0~dfsg1-1~squeeze.nd1_all.deb Size: 58266 SHA256: 77f4b8e2129db61e00feaad3c1460a923975820c91e625dc4fff605039f14c7a SHA1: 878fa1b9c71726e276b82d462006a5a90c127ea6 MD5sum: 69d292f9dfb2f666d6a3542ddbe60dd3 Description: high-performance Python package for predictive modeling mlpy provides high level procedures that support, with few lines of code, the design of rich Data Analysis Protocols (DAPs) for preprocessing, clustering, predictive classification and feature selection. Methods are available for feature weighting and ranking, data resampling, error evaluation and experiment landscaping. . mlpy includes: SVM (Support Vector Machine), KNN (K Nearest Neighbor), FDA, SRDA, PDA, DLDA (Fisher, Spectral Regression, Penalized, Diagonal Linear Discriminant Analysis) for classification and feature weighting, I-RELIEF, DWT and FSSun for feature weighting, *RFE (Recursive Feature Elimination) and RFS (Recursive Forward Selection) for feature ranking, DWT, UWT, CWT (Discrete, Undecimated, Continuous Wavelet Transform), KNN imputing, DTW (Dynamic Time Warping), Hierarchical Clustering, k-medoids, Resampling Methods, Metric Functions, Canberra indicators. Python-Version: 2.5, 2.6 Package: python-mlpy-doc Source: mlpy Version: 2.2.0~dfsg1-1~squeeze.nd1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1136 Depends: libjs-jquery Suggests: python-mlpy Homepage: https://mlpy.fbk.eu/ Priority: optional Section: doc Filename: pool/main/m/mlpy/python-mlpy-doc_2.2.0~dfsg1-1~squeeze.nd1_all.deb Size: 480866 SHA256: a1a158d0318129c2b6ac767cf0385b266a45aeaa6a06a45fc5bf61d6a77ff9b5 SHA1: 0de7a2884bfd8de60215558a742d138d0d35f167 MD5sum: 676b76390bb77f41f7a1ee949b11e212 Description: documention and examples for mlpy mlpy provides high level procedures that support, with few lines of code, the design of rich Data Analysis Protocols (DAPs) for preprocessing, clustering, predictive classification and feature selection. Methods are available for feature weighting and ranking, data resampling, error evaluation and experiment landscaping. . This package provides user documentation for mlpy in various formats (HTML, PDF). Package: python-mpi4py-doc Source: mpi4py Version: 1.2.2-1~pre1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 272 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-mpi4py Homepage: http://code.google.com/p/mpi4py/ Priority: extra Section: python Filename: pool/main/m/mpi4py/python-mpi4py-doc_1.2.2-1~pre1~nd60+1_all.deb Size: 54806 SHA256: 1b60db1309827d5c6ca4de2674c4133a7fe851d1fcc86d6a5d13043ed75c76a8 SHA1: cedce687642d97f89416079719540eedd3c926a1 MD5sum: 8365de41874844b3114055398c97d734 Description: bindings of the MPI standard -- documentation MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. . mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). . This package provides HTML rendering of the user's manual. Package: python-mvpa Source: pymvpa Version: 0.4.8-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4104 Depends: neurodebian-popularity-contest, python (>= 2.5), python-numpy (<< 1:1.5), python-numpy (>= 1:1.4.1), python-support (>= 0.90.0), python2.6, python-mvpa-lib (>= 0.4.8-1~nd60+1) Recommends: python-nifti, python-psyco, python-mdp, python-scipy, shogun-python-modular, python-pywt, python-matplotlib, python-reportlab Suggests: fslview, fsl, python-nose, python-lxml, python-openopt, python-rpy, python-mvpa-doc Provides: python2.5-mvpa, python2.6-mvpa Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa/python-mvpa_0.4.8-1~nd60+1_all.deb Size: 2205030 SHA256: f198dd1180f10001be495143f5370afdda65f56a1af0aec6d5000cb381b79589 SHA1: 94d71c82ffa6ee99040d6f6e2485567e477c9c45 MD5sum: 891f70fa8ff33dec72eeb01a687191c8 Description: multivariate pattern analysis with Python PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, GNB, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. Python-Version: 2.5, 2.6 Package: python-mvpa-doc Source: pymvpa Version: 0.4.8-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 41276 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-mvpa Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa/python-mvpa-doc_0.4.8-1~nd60+1_all.deb Size: 8760270 SHA256: ba87abd25596d8843f515761d31fbf29a21cbbbe85a1fb00c1d7c237c273f0ea SHA1: ae46a082ba247faab1cf1ce73de7d97088d0560a MD5sum: 3ede16fa2a8698ddd6e116567f4d2862 Description: documentation and examples for PyMVPA PyMVPA documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation * BibTeX references file . Additionally, all example scripts shipped with the PyMVPA sources are included. Package: python-mvpa2 Source: pymvpa2 Version: 2.2.0-3~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4956 Depends: neurodebian-popularity-contest, python, python-numpy (>= 1:1.4.1), python-numpy (<< 1:1.5), python-support (>= 0.90.0), python-mvpa2-lib (>= 2.2.0-3~nd60+1) Recommends: python-h5py, python-lxml, python-matplotlib, python-mdp, python-nibabel, python-psutil, python-psyco, python-pywt, python-reportlab, python-scipy, python-sklearn, shogun-python-modular, liblapack-dev Suggests: fslview, fsl, python-mvpa2-doc, python-nose, python-openopt, python-rpy2 Provides: python2.5-mvpa2, python2.6-mvpa2 Homepage: http://www.pymvpa.org Priority: optional Section: python Filename: pool/main/p/pymvpa2/python-mvpa2_2.2.0-3~nd60+1_all.deb Size: 2400402 SHA256: 165f294a1682846ce8ea6da16a20d16953a9d1b35e860a504a5689e71b0cc9fe SHA1: 51555aa7f509fd723d3ffb871f51948ba376b52b MD5sum: 6155e8e9dba329015abb646af812158b Description: multivariate pattern analysis with Python v. 2 PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun). . While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets. . This is a package of PyMVPA v.2. Previously released stable version is provided by the python-mvpa package. Python-Version: 2.5, 2.6 Package: python-mvpa2-doc Source: pymvpa2 Version: 2.2.0-3~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 27024 Depends: neurodebian-popularity-contest, libjs-jquery, libjs-underscore Suggests: python-mvpa2, python-mvpa2-tutorialdata, ipython-notebook Homepage: http://www.pymvpa.org Priority: optional Section: doc Filename: pool/main/p/pymvpa2/python-mvpa2-doc_2.2.0-3~nd60+1_all.deb Size: 5306840 SHA256: e0601943050249df5e939e2e66c08c8d3f7cb8e752461573f5c9751a4692c3e4 SHA1: afdbe2a1b3f4072292d89d489c5f75d28e8d9a42 MD5sum: 6cb2d8cb8bfa5945e8454ac8a77461d8 Description: documentation and examples for PyMVPA v. 2 This is an add-on package for the PyMVPA framework. It provides a HTML documentation (tutorial, FAQ etc.), and example scripts. In addition the PyMVPA tutorial is also provided as IPython notebooks. Package: python-networkx Version: 1.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2672 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0) Recommends: python-numpy, python-scipy, python-pygraphviz | python-pydot, python-pkg-resources, python-matplotlib, python-yaml Homepage: http://networkx.lanl.gov/ Priority: optional Section: python Filename: pool/main/p/python-networkx/python-networkx_1.4-2~nd60+1_all.deb Size: 647278 SHA256: ad2839debf74b059def0e377f52e5b3fad23613603d2f69c61a6a7f59bfbd6b7 SHA1: ac9dd5bce62e8f0e1460bf9cff1b4655278cb7fb MD5sum: 88fcc837ad2b6e0c5bcf56df2802b09d Description: tool to create, manipulate and study complex networks NetworkX is a Python-based package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. . The structure of a graph or network is encoded in the edges (connections, links, ties, arcs, bonds) between nodes (vertices, sites, actors). If unqualified, by graph it's meant a simple undirected graph, i.e. no self-loops and no multiple edges are allowed. By a network it's usually meant a graph with weights (fields, properties) on nodes and/or edges. . The potential audience for NetworkX includes: mathematicians, physicists, biologists, computer scientists, social scientists. Package: python-networkx-doc Source: python-networkx Version: 1.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 15788 Depends: neurodebian-popularity-contest Homepage: http://networkx.lanl.gov/ Priority: optional Section: doc Filename: pool/main/p/python-networkx/python-networkx-doc_1.4-2~nd60+1_all.deb Size: 6169452 SHA256: c55591f29b87d1772fdf11a511fee43512b88d27dbdb99b0083c2d131b8ffdd6 SHA1: 15e7a5d65dfdb7ebc585a56a55441a4240644b2b MD5sum: feabea6baf7cf83997120652132961f9 Description: tool to create, manipulate and study complex networks - documentation NetworkX is a Python-based package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. . The structure of a graph or network is encoded in the edges (connections, links, ties, arcs, bonds) between nodes (vertices, sites, actors). If unqualified, by graph it's meant a simple undirected graph, i.e. no self-loops and no multiple edges are allowed. By a network it's usually meant a graph with weights (fields, properties) on nodes and/or edges. . The potential audience for NetworkX includes: mathematicians, physicists, biologists, computer scientists, social scientists. . This package contains documentation for NetworkX. Package: python-nibabel Source: nibabel Version: 1.3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4472 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-dicom, python-fuse Suggests: python-nibabel-doc Provides: python2.5-nibabel, python2.6-nibabel Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: python Filename: pool/main/n/nibabel/python-nibabel_1.3.0-1~nd60+1_all.deb Size: 1826262 SHA256: c5ee3704ec4ca7ca29f95fca7479075ca22445d97a266158222b19c4dc9a8748 SHA1: d66bd84119483cd35964b0196695fecd62e27fad MD5sum: d9bf1352db30bef15f81c8c5f2d8afc2 Description: Python bindings to various neuroimaging data formats NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package also provides a commandline tools: . - dicomfs - FUSE filesystem on top of a directory with DICOMs - nib-ls - 'ls' for neuroimaging files - parrec2nii - for conversion of PAR/REC to NIfTI images Python-Version: 2.5, 2.6 Package: python-nibabel-doc Source: nibabel Version: 1.3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2848 Depends: neurodebian-popularity-contest, libjs-jquery Homepage: http://nipy.sourceforge.net/nibabel Priority: extra Section: doc Filename: pool/main/n/nibabel/python-nibabel-doc_1.3.0-1~nd60+1_all.deb Size: 421236 SHA256: f4e57f595eef13d0a9354ed348287fe3875db678052cf0c1d003837908be241c SHA1: ae1b66d954bc4b56a923e3167b95d77958441e22 MD5sum: 691d3184e3d28e7b47d609f57e5ffa15 Description: documentation for NiBabel NiBabel provides read and write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2), GIFTI, NIfTI1, MINC, as well as PAR/REC. The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays. NiBabel is the successor of PyNIfTI. . This package provides the documentation in HTML format. Package: python-nibabel-snapshot Source: nibabel-snapshot Version: 1.0.0.dev+137+gf1c6-1~squeeze.nd1 Architecture: all Maintainer: Michael Hanke Installed-Size: 964 Depends: python (>= 2.5), python-support (>= 0.90.0), python-numpy, libjs-jquery, python-scipy Conflicts: python-nibabel Provides: python2.5-nibabel-snapshot, python2.6-nibabel-snapshot Homepage: http://nipy.sourceforge.net/nibabel Priority: optional Section: python Filename: pool/main/n/nibabel-snapshot/python-nibabel-snapshot_1.0.0.dev+137+gf1c6-1~squeeze.nd1_all.deb Size: 469788 SHA256: 88f8f2603bab6606985a137433460486b70e5765b08eba1ca81b8dccd3cfe96f SHA1: 12bd934e7cec2d24b9aec58fd66b592b9b4be485 MD5sum: feea254498444cc7f9827456091e83dc Description: Python bindings to various neuroimaging data formats Currently supported formats are: . * ANALYZE (including SPM2 and SPM99 variants) * MINC * NIfTI * PAR/REC . This package also provides a commandline tool for conversion of PAR/REC to NIfTI images. Python-Version: 2.5, 2.6 Package: python-nipy Source: nipy Version: 0.3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3884 Depends: neurodebian-popularity-contest, python (>= 2.5), python-numpy (<< 1:1.5), python-numpy (>= 1:1.4.1), python-support (>= 0.90.0), python-scipy, python-nibabel, python-nipy-lib (>= 0.3.0-1~nd60+1) Recommends: python-matplotlib, mayavi2, python-sympy Suggests: python-mvpa Provides: python2.5-nipy, python2.6-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: python Filename: pool/main/n/nipy/python-nipy_0.3.0-1~nd60+1_all.deb Size: 785648 SHA256: ff3374e0c68a47627c9d4eff58f4d74a6f17c92d1f5d257ada5084555b803499 SHA1: e73f35916991f188a27d520ea013a39d00778469 MD5sum: e190b5654ab64516ee72673140282acf Description: Analysis of structural and functional neuroimaging data NiPy is a Python-based framework for the analysis of structural and functional neuroimaging data. It provides functionality for - General linear model (GLM) statistical analysis - Combined slice time correction and motion correction - General image registration routines with flexible cost functions, optimizers and re-sampling schemes - Image segmentation - Basic visualization of results in 2D and 3D - Basic time series diagnostics - Clustering and activation pattern analysis across subjects - Reproducibility analysis for group studies Python-Version: 2.5, 2.6 Package: python-nipy-doc Source: nipy Version: 0.3.0-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 10312 Depends: neurodebian-popularity-contest, libjs-jquery Recommends: python-nipy Homepage: http://neuroimaging.scipy.org Priority: extra Section: doc Filename: pool/main/n/nipy/python-nipy-doc_0.3.0-1~nd60+1_all.deb Size: 2816524 SHA256: 0594fb03db5ad7836f6ebab64e911e527573127f7f177405ccea1004fca42509 SHA1: 0a882893920d6c15717ab1303b940dbbf94ec414 MD5sum: aabe73c4d16c93426012fb2436bcabeb Description: documentation and examples for NiPy This package contains NiPy documentation in various formats (HTML, TXT) including * User manual * Developer guidelines * API documentation Package: python-nipype Source: nipype Version: 0.8-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 3476 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-scipy, python-simplejson, python-traits (>= 4.0) | python-traits4, python-nibabel (>= 1.0.0~), python-networkx (>= 1.3), python-cfflib Recommends: ipython, python-nose, graphviz Suggests: fsl, afni, python-nipy, slicer, matlab-spm8, python-pyxnat Provides: python2.6-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: python Filename: pool/main/n/nipype/python-nipype_0.8-1~nd60+1_all.deb Size: 591934 SHA256: 6cea7e3e577d3a3c0d27ff9363a67b3bc7613b0c78b2a3ba11860f9503979c9e SHA1: 8d16af0a1626c60f3f3d7aff2cee9ad1bedfa357 MD5sum: 5d560e487696028d8467b648fd35df5d Description: Neuroimaging data analysis pipelines in Python Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). Package: python-nipype-doc Source: nipype Version: 0.8-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 16948 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nipype Homepage: http://nipy.sourceforge.net/nipype/ Priority: optional Section: doc Filename: pool/main/n/nipype/python-nipype-doc_0.8-1~nd60+1_all.deb Size: 7724096 SHA256: 6d6e9de8cfd9cce6de435386d6c851530faf391e22bcb273e2b6e4f3fbb6655a SHA1: 70048349a4cdaf11ccad168385d2d8f193586024 MD5sum: 7b7cbb1b7e5f6d6cad414b6ff28ab9a5 Description: Neuroimaging data analysis pipelines in Python -- documentation Nipype interfaces Python to other neuroimaging packages and creates an API for specifying a full analysis pipeline in Python. Currently, it has interfaces for SPM, FSL, AFNI, Freesurfer, but could be extended for other packages (such as lipsia). . This package contains Nipype examples and documentation in various formats. Package: python-nitime Source: nitime Version: 0.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9444 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy Recommends: python-matplotlib, python-nose, python-nibabel, python-networkx Homepage: http://nipy.org/nitime Priority: extra Section: python Filename: pool/main/n/nitime/python-nitime_0.4-2~nd60+1_all.deb Size: 3908874 SHA256: 03bb69e85b0c60f62d7c56de8f7cfa9e05fc93746205fe87df6ef05a2aef914d SHA1: 599b2f49a8f7c78bdcbed469dbd4e81ee12cca1c MD5sum: 5ba3ac0c3d3a250dfdeaae5229b9f8fc Description: timeseries analysis for neuroscience data (nitime) Nitime is a Python module for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code. Package: python-nitime-doc Source: nitime Version: 0.4-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 7124 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-nitime Homepage: http://nipy.org/nitime Priority: extra Section: doc Filename: pool/main/n/nitime/python-nitime-doc_0.4-2~nd60+1_all.deb Size: 5300740 SHA256: ef5d041daa508131e2dc3f7fd82ffdf1311a430e6921ee392f1fb850ed8589f8 SHA1: 8c01d570fd9eac4b59af7392e487017fcbf68aca MD5sum: 16390cff8be229413da22076a622ea8f Description: timeseries analysis for neuroscience data (nitime) -- documentation Nitime is a Python module for time-series analysis of data from neuroscience experiments. . This package provides the documentation in HTML format. Package: python-openopt Source: openopt Version: 0.38+svn1589-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1612 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy Recommends: python-scipy, python-cvxopt, python-matplotlib, python-setproctitle Suggests: lp-solve Conflicts: python-scikits-openopt Replaces: python-scikits-openopt Provides: python2.5-openopt, python2.6-openopt Homepage: http://www.openopt.org Priority: extra Section: python Filename: pool/main/o/openopt/python-openopt_0.38+svn1589-1~nd60+1_all.deb Size: 245078 SHA256: 99d7232ca419c672cc667708687c3347fa7683e431d22124840bd2d6f70c02ae SHA1: e7209294307c6d27e9b1983f7362a6afe45b934b MD5sum: bedd41cecd50b21a5d02c1db1d0a2767 Description: Python module for numerical optimization Numerical optimization framework developed in Python which provides connections to lots of solvers with easy and unified OpenOpt syntax. Problems which can be tackled with OpenOpt * Linear Problem (LP) * Mixed-Integer Linear Problem (MILP) * Quadratic Problem (QP) * Non-Linear Problem (NLP) * Non-Smooth Problem (NSP) * Non-Linear Solve Problem (NLSP) * Least Squares Problem (LSP) * Linear Least Squares Problem (LLSP) * Mini-Max Problem (MMP) * Global Problem (GLP) . A variety of solvers is available (e.g. IPOPT, ALGENCAN). Python-Version: 2.5, 2.6 Package: python-openpyxl Source: openpyxl Version: 1.7.0+ds1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 628 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0) Recommends: python-nose, python-pil, python-imaging Homepage: http://bitbucket.org/ericgazoni/openpyxl/ Priority: optional Section: python Filename: pool/main/o/openpyxl/python-openpyxl_1.7.0+ds1-1~nd60+1_all.deb Size: 92724 SHA256: 62d2ca02bae433283a9c08f1b35d670f6cb90804c3e73d07a55cb09adc0e4dec SHA1: b8d0c6b4399a833690c4fd873625285914580cff MD5sum: a85a039f92ae675bf6edf6bca93c42d0 Description: module to read/write OpenXML xlsx/xlsm files Openpyxl is a pure Python module to read/write Excel 2007 (OpenXML) xlsx/xlsm files. Package: python-pandas Source: pandas Version: 0.7.3-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 2220 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-dateutil, python-pandas-lib (>= 0.7.3-1~nd60+1) Recommends: python-scipy, python-matplotlib, python-tables, python-tz, python-xlrd, python-scikits.statsmodels, python-openpyxl, python-xlwt Suggests: python-pandas-doc Provides: python2.5-pandas, python2.6-pandas Homepage: http://pandas.sourceforge.net Priority: optional Section: python Filename: pool/main/p/pandas/python-pandas_0.7.3-1~nd60+1_all.deb Size: 460866 SHA256: ee9fa4862c1988c184069c02ff59b90d4c4751c1cd0d9185eed4030842cc7072 SHA1: a49274e19f474958baf2e0fe8e39438f169fb6f1 MD5sum: 307fb7d696545ea68a70c3ef2f5836c6 Description: data structures for "relational" or "labeled" data pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure Package: python-pp Source: parallelpython Version: 1.6.2-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 176 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.parallelpython.com/ Priority: optional Section: python Filename: pool/main/p/parallelpython/python-pp_1.6.2-2~nd60+1_all.deb Size: 34268 SHA256: 95db9f990c816ce3022a421f93ffd3f0bf55ad5a72f2ef9e97473d96a903868d SHA1: 85c637d5c9719b75bb0e9e1f411d22635f9e15f2 MD5sum: 0bcf4b371060bd185ac604c4ebc65dc8 Description: parallel and distributed programming toolkit for Python Parallel Python module (pp) provides an easy and efficient way to create parallel-enabled applications for SMP computers and clusters. pp module features cross-platform portability and dynamic load balancing. Thus application written with PP will parallelize efficiently even on heterogeneous and multi-platform clusters (including clusters running other application with variable CPU loads). Python-Version: 2.5, 2.6 Package: python-pprocess Source: pprocess Version: 0.5-1+nd0~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 892 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Homepage: http://www.boddie.org.uk/python/pprocess.html Priority: optional Section: python Filename: pool/main/p/pprocess/python-pprocess_0.5-1+nd0~nd60+1_all.deb Size: 108524 SHA256: 5cd48b0f3b53deca43ccc2505cd2d71fef3fbc9ab6c09b2ca2c4fa461d96ba82 SHA1: e2878286c617c01706519eb49f8d2e92ba1807ea MD5sum: 8faaf0ec5f452db2c2f86f8b8fcdd686 Description: elementary parallel programming for Python The pprocess module provides elementary support for parallel programming in Python using a fork-based process creation model in conjunction with a channel-based communications model implemented using socketpair and poll. On systems with multiple CPUs or multicore CPUs, processes should take advantage of as many CPUs or cores as the operating system permits. Python-Version: 2.5, 2.6 Package: python-pyentropy Source: pyentropy Version: 0.4.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 108 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy (>= 1.3) Recommends: python-scipy Suggests: python-nose Provides: python2.5-pyentropy, python2.6-pyentropy Homepage: http://code.google.com/p/pyentropy Priority: extra Section: python Filename: pool/main/p/pyentropy/python-pyentropy_0.4.1-1~nd60+1_all.deb Size: 21332 SHA256: 6175773981eb53152667c5a08a77b4e4a419bbc59537f6d2b307d56b7478e881 SHA1: 332090c698b49a4bde76a7c084042976322f6fde MD5sum: ec77541c844fd6130c1abd2435b821e1 Description: Python module for estimation information theoretic quantities A Python module for estimation of entropy and information theoretic quantities using cutting edge bias correction methods, such as * Panzeri-Treves (PT) * Quadratic Extrapolation (QE) * Nemenman-Shafee-Bialek (NSB) Python-Version: 2.5, 2.6 Package: python-pyepl-common Source: pyepl Version: 1.1.0+git12-g365f8e3-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 820 Depends: neurodebian-popularity-contest, python Homepage: http://pyepl.sourceforge.net/ Priority: optional Section: python Filename: pool/main/p/pyepl/python-pyepl-common_1.1.0+git12-g365f8e3-2~nd60+1_all.deb Size: 818240 SHA256: aa078634165cff6cbc30aed0183e65dc88a10e2b51f77d408aea07c5d1ffdb4d SHA1: 8ea2b7304ede0ac64651dd3446700ec0ff6c9535 MD5sum: 8a1fcedb740e4809264ad2025fa40abe Description: module for coding psychology experiments in Python PyEPL is a stimuli delivery and response registration toolkit to be used for generating psychology (as well as neuroscience, marketing research, and other) experiments. . It provides - presentation: both visual and auditory stimuli - responses registration: both manual (keyboard/joystick) and sound (microphone) time-stamped - sync-pulsing: synchronizing your behavioral task with external acquisition hardware - flexibility of encoding various experiments due to the use of Python as a description language - fast execution of critical points due to the calls to linked compiled libraries . This toolbox is here to be an alternative for a widely used commercial product E'(E-Prime) . This package provides common files such as images. Package: python-pyglet Source: pyglet Version: 1.1.4.dfsg-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4356 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-ctypes | python (>= 2.5), libgtk2.0-0, libgl1 | libgl1-mesa-swx11, libglu1 | libglu1-mesa Recommends: libasound2 | libopenal1 Provides: python2.5-pyglet, python2.6-pyglet Homepage: http://www.pyglet.org Priority: optional Section: python Filename: pool/main/p/pyglet/python-pyglet_1.1.4.dfsg-1~nd60+1_all.deb Size: 972196 SHA256: 91b6b5b43bba43c419bc93e875ebba6ac09733899d7d34e944a5df43c3a33a6c SHA1: d9cb126e2761a5bd4b56f73542eac4dadea3f185 MD5sum: e3b5a0fd56d17deacf83460ebcea6737 Description: cross-platform windowing and multimedia library This library provides an object-oriented programming interface for developing games and other visually-rich applications with Python. pyglet has virtually no external dependencies. For most applications and game requirements, pyglet needs nothing else besides Python, simplifying distribution and installation. It also handles multiple windows and fully aware of multi-monitor setups. . pyglet might be seen as an alternative to PyGame. Package: python-pynn Source: pynn Version: 0.7.5-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 1024 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Recommends: python-jinja2, python-cheetah Suggests: python-neuron, python-brian, python-csa Homepage: http://neuralensemble.org/trac/PyNN Priority: extra Section: python Filename: pool/main/p/pynn/python-pynn_0.7.5-1~nd60+1_all.deb Size: 192132 SHA256: 72efbfcbfc8b305db0ea7961ac51024fddfe90cbe9244b7cd1696b4335f784cb SHA1: 2fc4485fce975e41b1c5f92f5448876f4249df7e MD5sum: e17530107f39bc5ff9dfc577f2bc239c Description: simulator-independent specification of neuronal network models PyNN allows for coding a model once and run it without modification on any simulator that PyNN supports (currently NEURON, NEST, PCSIM and Brian). PyNN translates standard cell-model names and parameter names into simulator-specific names. Package: python-pyoptical Source: pyoptical Version: 0.2-1~squeeze.nd1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 72 Depends: python-serial Enhances: psychopy, python-pyepl Homepage: http://github.com/esc/pyoptical Priority: extra Section: python Filename: pool/main/p/pyoptical/python-pyoptical_0.2-1~squeeze.nd1_all.deb Size: 6956 SHA256: 66717fa53f6d283a3a697f969f32bc1c15f1467bbc26bb09ffceba7beb871644 SHA1: 3201dafeb370ade84db53fbe0ce85c1a0e57455c MD5sum: cf68976930753cdd2fde4b74529ba1b6 Description: python interface to the CRS 'OptiCAL' photometer The 'OptiCAL' is a photometer that is produced by Cambridge Research Systems (CRS). This device is a standard tool for gamma-calibration of display devices in vision research. This package provides a free-software replacement for the Windows-software distributed by the manufacturer that allows querying an OptiCAL via a serial connection. pyoptical can be used as a library for third-party applications or as a standalone command line tool. Python-Version: 2.5, 2.6 Package: python-pyssdh Source: openelectrophy Version: 0.0.svn143-1~squeeze.nd1 Architecture: all Maintainer: Experimental Psychology Maintainers Installed-Size: 792 Depends: python-support (>= 0.90.0), python-numpy, python-scipy, python-qt4, python-mysqldb, python-matplotlib Recommends: g++ | c++-compiler, python-mdp Suggests: mysql-server Provides: python2.4-pyssdh, python2.5-pyssdh Homepage: http://neuralensemble.org/trac/OpenElectrophy Priority: extra Section: python Filename: pool/main/o/openelectrophy/python-pyssdh_0.0.svn143-1~squeeze.nd1_all.deb Size: 119516 SHA256: 1adaffa1132d6581ae599f8781f656a482fb586ecdaa789ab235068043a7f85f SHA1: bd3b2114258a93dbd1108eaea341f8541ff74a47 MD5sum: 1f942f44319f70c9cc3afcaac2e70796 Description: data analysis framework for intra- and extra-cellular recordings This software aims to simplify data and analysis sharing for intra- and extra-cellular recordings. It supports time frequency plots, spike detection, spike rate calculation, and analysis of phase locked signals. . Data handling and storage utilizes a MySQL database, allowing to handle large amounts of data easily and efficiently. Therefore, a MySQL server running locally or on a remote machine is required. . This package provides the OpenElectrophy Python module. Python-Version: 2.4, 2.5 Package: python-pyxid Source: pyxid Version: 1.0-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 80 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0) Homepage: https://github.com/cedrus-opensource/pyxid Priority: optional Section: python Filename: pool/main/p/pyxid/python-pyxid_1.0-1~nd+1_all.deb Size: 11020 SHA256: 1031c0d69dd73cb38f3e0b826193211706a94bfd04da4287288418b257e54249 SHA1: 0f0d0524354e5d07eb89efcb11779d9acd9d57e2 MD5sum: 1f2a9bc07952b1f5c6b65fc5c092f75c Description: interface for Cedrus XID and StimTracker devices pyxid is a Python library for interfacing with Cedrus XID (eXperiment Interface Device) and StimTracker devices. XID devices are used in software such as SuperLab, Presentation, and ePrime for receiving input as part of stimulus/response testing experiments. . pyxid handles all of the low level device handling for XID devices in Python projects. Package: python-scikits-learn Source: scikit-learn Version: 0.14.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 40 Depends: neurodebian-popularity-contest, python-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: oldlibs Filename: pool/main/s/scikit-learn/python-scikits-learn_0.14.1-1~nd60+1_all.deb Size: 33344 SHA256: 9555211454632d3f07ce54d72c37cffacce41c1668c7805e7b053bb80c74b72c SHA1: b9b56eb91139b3940a3bb4c6b1bb3c3e77d3650d MD5sum: f30186aa1f88f8750ba2bd8bf8b6da8a Description: transitional compatibility package for scikits.learn -> sklearn migration Provides old namespace (scikits.learn) and could be removed if dependent code migrated to use sklearn for clarity of the namespace. Package: python-scikits.statsmodels Source: statsmodels Version: 0.4.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 120 Depends: neurodebian-popularity-contest, python-statsmodels, python (>= 2.5), python-support (>= 0.90.0) Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: oldlibs Filename: pool/main/s/statsmodels/python-scikits.statsmodels_0.4.2-1~nd60+1_all.deb Size: 10268 SHA256: 584640f2cdcd4739396ad91847b24d26b62e22bf4ee83aff86c59ef90288f67b SHA1: 2908e6aa9a99de3da575f40c400dde4c5b2159ee MD5sum: 4d1cc0505c5aaba51dd5dc8b5d6aba29 Description: transitional compatibility package for statsmodels migration Provides old namespace (scikits.statsmodels) and could be removed if dependent code migrated to use statsmodels for clarity of the namespace. Package: python-simplegeneric Source: simplegeneric Version: 0.7-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 52 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Provides: python2.5-simplegeneric, python2.6-simplegeneric Homepage: http://pypi.python.org/pypi/simplegeneric Priority: extra Section: python Filename: pool/main/s/simplegeneric/python-simplegeneric_0.7-1~nd60+1_all.deb Size: 9802 SHA256: a1f16f30724b88550716edbaacbaedaea6dbcc88a2a5e22f375896ba31e71c5e SHA1: af5b697130da85854bdb717319c7ae2aa719b9ae MD5sum: 34b6361e577be81e7cc33b0597a0b491 Description: Simple generic functions for Python The simplegeneric module lets you define simple single-dispatch generic functions, akin to Python's built-in generic functions like len(), iter() and so on. However, instead of using specially-named methods, these generic functions use simple lookup tables, akin to those used by e.g. pickle.dump() and other generic functions found in the Python standard library. Package: python-sklearn Source: scikit-learn Version: 0.14.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4180 Depends: neurodebian-popularity-contest, python2.6, python (>= 2.6.6-3+squeeze3~), python (<< 2.7), python-numpy, python-scipy, python-sklearn-lib (>= 0.14.1-1~nd60+1), python-joblib (>= 0.4.5) Recommends: python-nose, python-matplotlib Suggests: python-dap, python-scikits-optimization, python-sklearn-doc, ipython Enhances: python-mdp, python-mvpa2 Breaks: python-scikits-learn (<< 0.9~) Replaces: python-scikits-learn (<< 0.9~) Provides: python2.6-sklearn Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: python Filename: pool/main/s/scikit-learn/python-sklearn_0.14.1-1~nd60+1_all.deb Size: 1103910 SHA256: 57184ab12678b753e5be6c9465c7f494366ab60a47107f8837e04ecec3e362e7 SHA1: 212b7d691784204e6246550f24163844ebb20803 MD5sum: 72e5f2c4eef373f1707df2d2eab3fabd Description: Python modules for machine learning and data mining scikit-learn is a collection of Python modules relevant to machine/statistical learning and data mining. Non-exhaustive list of included functionality: - Gaussian Mixture Models - Manifold learning - kNN - SVM (via LIBSVM) Package: python-sklearn-doc Source: scikit-learn Version: 0.14.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 988 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-sklearn Conflicts: python-scikits-learn-doc Replaces: python-scikits-learn-doc Homepage: http://scikit-learn.sourceforge.net Priority: optional Section: doc Filename: pool/main/s/scikit-learn/python-sklearn-doc_0.14.1-1~nd60+1_all.deb Size: 190020 SHA256: f0ef856d852c6dcd8d2875a732721c7c1ceb18abc908d24226317ceed1d35bf5 SHA1: 3909cafd286fe5a3382d617a3fbb23a580facf7a MD5sum: 1263b68bd7322970b50c84d1eea82390 Description: documentation and examples for scikit-learn This package contains documentation and example scripts for python-sklearn. Package: python-sphinx Source: sphinx Version: 1.0.7-2~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4188 Depends: neurodebian-popularity-contest, python (>= 2.4), python-support (>= 0.90.0), python-docutils (>= 0.5), python-pygments (>= 0.8), python-jinja2 (>= 2.2), libjs-jquery Recommends: python (>= 2.6) | python-simplejson, python-imaging Suggests: jsmath Homepage: http://sphinx.pocoo.org/ Priority: optional Section: python Filename: pool/main/s/sphinx/python-sphinx_1.0.7-2~nd60+1_all.deb Size: 1260210 SHA256: 5a134abec0131a6dcc56b85cd9089230b68374cc7e4896d8806d7e6e2e9ee9a7 SHA1: 21654aba4316d6b6799f864a41f925c64adf8725 MD5sum: 3968ce5358f08a65453ba21236af6630 Description: tool for producing documentation for Python projects Sphinx is a tool for producing documentation for Python projects, using reStructuredText as markup language. . Sphinx features: * HTML, CHM, LaTeX output, * Cross-referencing source code, * Automatic indices, * Code highlighting, using Pygments, * Extensibility. Existing extensions: - automatic testing of code snippets, - including doctrings from Python modules. Package: python-spyderlib Source: spyder Version: 2.2.5+dfsg-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5220 Depends: neurodebian-popularity-contest, python2.6, python (>= 2.6.6-3+squeeze3~), libjs-jquery, libjs-mathjax, python-qt4 Recommends: ipython-qtconsole, pep8, pyflakes (>= 0.5.0), pylint, python-matplotlib, python-numpy, python-psutil (>= 0.3.0), python-rope, python-scipy, python-sphinx Suggests: tortoisehg, gitk Breaks: python (>= 2.7), spyder (<< 2.0.12-1) Replaces: spyder (<< 2.0.12-1) Provides: python2.6-spyderlib Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: python Filename: pool/main/s/spyder/python-spyderlib_2.2.5+dfsg-1~nd60+1_all.deb Size: 1918622 SHA256: b439e88b540eb51a8ef2019dd63015fc252f43dd245edc757e17451743ef1cbb SHA1: bde98091c4f0c5302c4028207d345f068ddbfcfe MD5sum: bdb0d60a50ed127b07b70810092d9a9d Description: python IDE for scientists Originally written to design Spyder (the Scientific PYthon Development EnviRonment), the spyderlib Python library provides ready-to-use pure-Python widgets: source code editor with syntax highlighting and code introspection/analysis features, NumPy array editor, dictionary editor, Python console, etc. It's based on the Qt Python binding module PyQt4 (and is compatible with PySide since v2.2). Package: python-statsmodels Source: statsmodels Version: 0.4.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 13468 Depends: neurodebian-popularity-contest, python (>= 2.5), python-support (>= 0.90.0), python-numpy, python-scipy, python-statsmodels-lib (>= 0.4.2-1~nd60+1) Recommends: python-pandas, python-matplotlib, python-nose, python-joblib Conflicts: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Replaces: python-scikits-statsmodels, python-scikits.statsmodels (<< 0.4) Provides: python2.5-statsmodels, python2.6-statsmodels Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: python Filename: pool/main/s/statsmodels/python-statsmodels_0.4.2-1~nd60+1_all.deb Size: 3088722 SHA256: 2ef04a8c3b25f5f53d2b4565225c266c1ffd56cd603870642d1200f237b322b1 SHA1: 7adb86840f38d4012a854a18baba7d99f400d5e8 MD5sum: 7f239aa8214f3c27853703ceb1882fb3 Description: Python module for the estimation of statistical models statsmodels Python module provides classes and functions for the estimation of several categories of statistical models. These currently include linear regression models, OLS, GLS, WLS and GLS with AR(p) errors, generalized linear models for six distribution families and M-estimators for robust linear models. An extensive list of result statistics are available for each estimation problem. Package: python-statsmodels-doc Source: statsmodels Version: 0.4.2-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 24480 Depends: neurodebian-popularity-contest, libjs-jquery Suggests: python-statsmodels Conflicts: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Replaces: python-scikits-statsmodels-doc, python-scikits.statsmodels-doc Homepage: http://statsmodels.sourceforge.net/ Priority: extra Section: doc Filename: pool/main/s/statsmodels/python-statsmodels-doc_0.4.2-1~nd60+1_all.deb Size: 4018734 SHA256: 1b4131d7dd9a9166d666a66a5440d88fd0bf0f43da13a3410570212767b4d08b SHA1: aae094e6e65be8a31faa8a40f3e042c7a9551dea MD5sum: 9b877a84be82b5a435144ba95a80a2c2 Description: documentation and examples for statsmodels This package contains HTML documentation and example scripts for python-statsmodels. Package: python-surfer Source: pysurfer Version: 0.3+git15-gae6cbb1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 156 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, python-scipy, python-nibabel, python-imaging, mayavi2, python-argparse, ipython Recommends: mencoder Homepage: http://pysurfer.github.com Priority: extra Section: python Filename: pool/main/p/pysurfer/python-surfer_0.3+git15-gae6cbb1-1~nd60+1_all.deb Size: 28734 SHA256: 145a0c1b54cbaf35a29e42593256969b33e63bf3ecf76b7fbf094e691a9cd89b SHA1: 1355d1c6399e26dff01191cf4cf0d07a401a06e0 MD5sum: f82cecb6d7af2eaae4f1ac89cfc3918b Description: visualize Freesurfer's data in Python This is a Python package for visualization and interaction with cortical surface representations of neuroimaging data from Freesurfer. It extends Mayavi’s powerful visualization engine with a high-level interface for working with MRI and MEG data. . PySurfer offers both a command-line interface designed to broadly replicate Freesurfer’s Tksurfer program as well as a Python library for writing scripts to efficiently explore complex datasets. Python-Version: 2.6 Package: python-sympy Source: sympy Version: 0.6.7-1.1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 9268 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0) Recommends: python-imaging, python-ctypes, ipython Homepage: http://code.google.com/p/sympy/ Priority: optional Section: python Filename: pool/main/s/sympy/python-sympy_0.6.7-1.1~nd60+1_all.deb Size: 1696348 SHA256: 90437808b931d5eb683327ab48a3ca8e81092be6f14d7f9cdf3f1fd8c8e6381d SHA1: 8ff9042d8752320997021155b1d7ee3620d11545 MD5sum: 38368c397ca1f942608ee78c4d6f1a8f Description: Computer Algebra System (CAS) in Python SymPy is a Python library for symbolic mathematics (manipulation). It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python and does not require any external libraries, except optionally for plotting support. Package: python-tz Version: 2012c-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 168 Depends: neurodebian-popularity-contest, tzdata, python2.6 | python2.5, python (>= 2.6.6-3+squeeze3~), python (<< 2.7) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python-tz_2012c-1~nd60+1_all.deb Size: 39072 SHA256: 7d18a9a34b49c4bcc4f5eb5f35289750011750934151448c2ad5a7ec0e388ed4 SHA1: 186b6469df5d330db8c74be4d2047a2de98fb302 MD5sum: 4f0ba7ddce40f9e16395817b27d2252c Description: Python version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). Package: python3-datalad Source: datalad Version: 0.17.5-1~nd+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 4665 Depends: neurodebian-popularity-contest, git-annex (>= 8.20200309~) | git-annex-standalone (>= 8.20200309~), patool, p7zip-full, python3 (>= 3.7), python3-annexremote, python3-distro, python3-distutils | libpython3-stdlib (<= 3.6.4~rc1-2), python3-fasteners (>= 0.14~), python3-gitlab, python3-humanize, python3-importlib-metadata | python3 (>> 3.10), python3-iso8601, python3-keyring, python3-keyrings.alt | python3-keyring (<= 8), python3-mock, python3-msgpack, python3-pil, python3-platformdirs, python3-requests (>= 1.2), python3-secretstorage, python3-simplejson, python3-six, python3-tqdm, python3-chardet, python3-packaging, python3:any Recommends: python3-boto, python3-exif, python3-html5lib, python3-httpretty, python3-jsmin, python3-libxmp, python3-lzma, python3-mutagen, python3-pytest, python3-pyperclip, python3-requests-ftp, python3-vcr, python3-whoosh Suggests: python3-duecredit, datalad-container, datalad-crawler, datalad-neuroimaging, python3-bs4, python3-numpy Breaks: datalad-container (<< 1.1.2) Homepage: https://datalad.org Priority: optional Section: python Filename: pool/main/d/datalad/python3-datalad_0.17.5-1~nd+1_all.deb Size: 958872 SHA256: 1f3e16c16863bab40ba92405109ab26c78f19e3e86e2b38733a035221c4e7744 SHA1: 873da190eb5ee83576ff519c2d564e1f841abe5b MD5sum: 7a97a6f55929cc103dd60d7783a9565e Description: data files management and distribution platform DataLad is a data management and distribution platform providing access to a wide range of data resources already available online. Using git-annex as its backend for data logistics it provides following facilities built-in or available through additional extensions . - command line and Python interfaces for manipulation of collections of datasets (install, uninstall, update, publish, save, etc.) and separate files/directories (add, get) - extract, aggregate, and search through various sources of metadata (xmp, EXIF, etc; install datalad-neuroimaging for DICOM, BIDS, NIfTI support) - crawl web sites to automatically prepare and update git-annex repositories with content from online websites, S3, etc (install datalad-crawler) . This package installs the module for Python 3, and Recommends install all dependencies necessary for searching and managing datasets, publishing, and testing. If you need base functionality, install without Recommends. Package: python3-dateutil Version: 2.0+dfsg1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 208 Depends: neurodebian-popularity-contest, python3 (>= 3.1.2-8~), tzdata Homepage: http://labix.org/python-dateutil Priority: optional Section: python Filename: pool/main/p/python3-dateutil/python3-dateutil_2.0+dfsg1-1~nd60+1_all.deb Size: 49690 SHA256: 368dd0f8ee38441729576c2586649a658776973a7207dff2e6978ce407ad18ad SHA1: d21c27d6fdd4e6397df3da9db21d35e4afdd268e MD5sum: 3a161bea3ea6f3277dfa3ffada23ac7b Description: powerful extensions to the standard datetime module in Python 3 The dateutil package extends the standard datetime module with: . * computing of relative deltas (next month, next year, next Monday, last week of month, etc); * computing of relative deltas between two given date and/or datetime objects * computing of dates based on very flexible recurrence rules, using a superset of the iCalendar specification. Parsing of RFC strings is supported as well. * generic parsing of dates in almost any string format * timezone (tzinfo) implementations for tzfile(5) format files (/etc/localtime, /usr/share/zoneinfo, etc), TZ environment string (in all known formats), iCalendar format files, given ranges (with help from relative deltas), local machine timezone, fixed offset timezone, UTC timezone * computing of Easter Sunday dates for any given year, using Western, Orthodox or Julian algorithms Package: python3-tz Source: python-tz Version: 2012c-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 148 Depends: neurodebian-popularity-contest, tzdata, python3 (>= 3.1.2-8~) Homepage: http://pypi.python.org/pypi/pytz/ Priority: optional Section: python Filename: pool/main/p/python-tz/python3-tz_2012c-1~nd60+1_all.deb Size: 31954 SHA256: 8369220a5c45e2bcc73f539094c49b6460edc87d5953223aba1b989895298ab7 SHA1: 48c692e73a79693f1c71693ad5fa6dc9123d541e MD5sum: 5a0dc5d19b334fa3515730c3e18fd4ce Description: Python3 version of the Olson timezone database python-tz brings the Olson tz database into Python. This library allows accurate and cross platform timezone calculations using Python 2.3 or higher. It also solves the issue of ambiguous times at the end of daylight savings, which you can read more about in the Python Library Reference (datetime.tzinfo). . This package contains the Python 3 version of the library. Package: qlandkarte Source: qlandkartegt Version: 0.16.0-1~squeeze.nd1 Architecture: all Maintainer: Michael Hanke Installed-Size: 32 Depends: qlandkartegt Homepage: http://www.qlandkarte.org Priority: optional Section: x11 Filename: pool/main/q/qlandkartegt/qlandkarte_0.16.0-1~squeeze.nd1_all.deb Size: 2600 SHA256: 971cfe8965e2ac770ab91d1ff374cd8a75c9c59d21a4a3a6c2fec65f0aa36f27 SHA1: 94b85cfadc8414252933de2d0bab789f82ea1161 MD5sum: 461d6da351ea7fcd3dbffa8c5a5bfcf3 Description: Transitional package for QLandkarteGT This is a transitional package for the QLandkarte to QLandkarteGT upgrade, and can be safely removed after the installation is complete. Package: slicer-data Source: slicer Version: 3.4.0~svn10438-3~squeeze.nd1 Architecture: all Maintainer: Debian Science Team Installed-Size: 75656 Depends: tk8.5 | wish Homepage: http://www.slicer.org/ Priority: optional Section: doc Filename: pool/main/s/slicer/slicer-data_3.4.0~svn10438-3~squeeze.nd1_all.deb Size: 45850452 SHA256: c5a750d8b5ae619e7676d13bc9f8975e081771cfe9b6d534b000b54968903d3f SHA1: 34f83bdb09471100da1c6ea84b67a6064bf20708 MD5sum: 7470a7eb5cb992fb85799cd88960ff69 Description: software package for visualization and image analysis - share Slicer is an application for computer scientists and clinical researchers. The platform provides functionality for segmentation, registration and three-dimensional visualization of multi-modal image data, as well as advanced image analysis algorithms for diffusion tensor imaging, functional magnetic resonance imaging and image-guided therapy. Standard image file formats are supported, and the application integrates interface capabilities to biomedical research software and image informatics frameworks. . 3D Slicer data files. Package: spm8-common Source: spm8 Version: 8.5236~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 22600 Depends: neurodebian-popularity-contest Recommends: spm8-data, spm8-doc Priority: extra Section: science Filename: pool/main/s/spm8/spm8-common_8.5236~dfsg.1-1~nd60+1_all.deb Size: 10751120 SHA256: edf4a3d61bf83d8bec4f0fb5bb60570f4238ef7836fa65ca2c00a4a1c24794a5 SHA1: 5f8967a4207755e7cf49f057d346488f386f6db1 MD5sum: 6f40962059e9052f4be305139d6ca2ae Description: analysis of brain imaging data sequences Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the platform-independent M-files. Package: spm8-data Source: spm8 Version: 8.5236~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 73316 Depends: neurodebian-popularity-contest Priority: extra Section: science Filename: pool/main/s/spm8/spm8-data_8.5236~dfsg.1-1~nd60+1_all.deb Size: 52177442 SHA256: 3a34d2f608da68657c6c043c4ea77824ca21d3fd6503d76f16e6cf32d135a186 SHA1: 56a86366da728ba963aa34bcb7110872eaf3c62f MD5sum: 2d7e8e891ee5df39f30b16bf6469d8d8 Description: data files for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provide the data files shipped with the SPM distribution, such as various stereotaxic brain space templates and EEG channel setups. Package: spm8-doc Source: spm8 Version: 8.5236~dfsg.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 9428 Depends: neurodebian-popularity-contest Priority: extra Section: doc Filename: pool/main/s/spm8/spm8-doc_8.5236~dfsg.1-1~nd60+1_all.deb Size: 8649014 SHA256: 908024bca0f06fb5bd66e91c9c36ce7713d6cc49b8750b74867d33ea3818913a SHA1: f66a9922270b62ef6443552d043af8db09a485cd MD5sum: 616c12c57fcf018d55bb7a490a1f29c6 Description: manual for SPM8 Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides the SPM manual in PDF format. Package: spyder Version: 2.2.5+dfsg-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 148 Depends: neurodebian-popularity-contest, python, python-spyderlib (= 2.2.5+dfsg-1~nd60+1) Homepage: http://code.google.com/p/spyderlib/ Priority: extra Section: devel Filename: pool/main/s/spyder/spyder_2.2.5+dfsg-1~nd60+1_all.deb Size: 56612 SHA256: a115609b5e5bb69668583b879a45791bf684c2b77a6509885bb54abfc482e8ab SHA1: f860bb27c12388ff5e292ef145485a5a101bd0f8 MD5sum: fd02e024e050c9206de523f1cc895e38 Description: python IDE for scientists Spyder (previously known as Pydee) is a free open-source Python development environment providing MATLAB-like features in a simple and light-weighted software Package: stabilitycalc Version: 0.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 148 Depends: neurodebian-popularity-contest, python, python-support (>= 0.90.0), python-numpy, python-matplotlib, python-scipy, python-nifti Recommends: python-dicom Homepage: https://github.com/bbfrederick/stabilitycalc Priority: extra Section: science Filename: pool/main/s/stabilitycalc/stabilitycalc_0.1-1~nd60+1_all.deb Size: 28608 SHA256: 997379d03b4381e98ba743db58b918585f79a077ba7dbb726e745841a0ac402e SHA1: 1efb3b900d33eec54f3893e4affe87eda15bd8d2 MD5sum: 66d13f8fbd8d79e87fa99a0e8cab8cd0 Description: evaluate fMRI scanner stability Command-line tools to calculate numerous fMRI scanner stability metrics, based on the FBIRN quality assurance test protocal. Any 4D volumetric timeseries image in NIfTI format is support input. Output is a rich HTML report. Python-Version: 2.5, 2.6 Package: svgtune Version: 0.1.0-2 Architecture: all Maintainer: Yaroslav Halchenko Installed-Size: 64 Depends: python, python-lxml Suggests: inkscape Homepage: http://github.com/yarikoptic/svgtune Priority: optional Section: graphics Filename: pool/main/s/svgtune/svgtune_0.1.0-2_all.deb Size: 6680 SHA256: 69b4df1e0b4c247673265c7f5bb2b2ffe2209d783617bf7f6eadce86633f80e1 SHA1: bec339e4453c35a05a616deef6769a6f2ad2d00d MD5sum: ef6797498477a73f930ad9bc0db3ba73 Description: tool to generate a set of .svg files out of a single .svg file svgtune is just a little helper to generate a set of .svg files out of a single .svg file, by tuning respective groups/layers visibility, transparency or anything else. . It might come very handy for generation of incremental figures to be embedded into the presentation in any format which inkscape could render using original .svg file (e.g. pdf, png). Package: testkraut Version: 0.0.1-1~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 488 Depends: neurodebian-popularity-contest, python (>= 2.6), python-support (>= 0.90.0), python-numpy, libjs-underscore, libjs-jquery, python-argparse Recommends: strace, python-scipy, python-colorama, python-apt Homepage: https://github.com/neurodebian/testkraut Priority: extra Section: python Filename: pool/main/t/testkraut/testkraut_0.0.1-1~nd60+1_all.deb Size: 83952 SHA256: 40efa2a5611fae4d74c8eeb1479b11e7933783329f899b3c0f662f8e2e311934 SHA1: 8df8e81c8de52f71211c4eaaa0f7f67c17ceea68 MD5sum: a2fea0d776199a6bdb898550d8b1790b Description: test and evaluate heterogeneous data processing pipelines This is a framework for software testing. That being said, testkraut tries to minimize the overlap with the scopes of unit testing, regression testing, and continuous integration testing. Instead, it aims to complement these kinds of testing, and is able to re-use them, or can be integrated with them. . In a nutshell testkraut helps to facilitate statistical analysis of test results. In particular, it focuses on two main scenarios: . * Comparing results of a single (test) implementation across different or changing computational environments (think: different operating systems, different hardware, or the same machine before an after a software upgrade). * Comparing results of different (test) implementations generating similar output from identical input (think: performance of various signal detection algorithms). . While such things can be done using other available tools as well, testkraut aims to provide a lightweight, yet comprehensive description of a test run. Such a description allows for decoupling test result generation and analysis – opening up the opportunity to “crowd-source” software testing efforts, and aggregate results beyond the scope of a single project, lab, company, or site. Python-Version: 2.6 Package: ubuntu-keyring Version: 2010.+09.30~nd60+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 32 Recommends: gpgv Priority: important Section: misc Filename: pool/main/u/ubuntu-keyring/ubuntu-keyring_2010.+09.30~nd60+1_all.deb Size: 11798 SHA256: 6cbcf7d81718e041431125e45215b746615d2012dc64a2a6c9d2a30e4826fed3 SHA1: a7ba0e713d1052a7aa26930c48dc4aaf6e97bbd1 MD5sum: cb5b41c6b935192df8432bce736f15b6 Description: GnuPG keys of the Ubuntu archive The Ubuntu project digitally signs its Release files. This package contains the archive keys used for that. Package: youtube-dl Version: 2021.12.17-1~nd110+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 5937 Depends: neurodebian-popularity-contest, python3-pkg-resources, python3:any Recommends: aria2 | wget | curl, ca-certificates, ffmpeg, mpv | mplayer, python3-pyxattr, rtmpdump, python3-pycryptodome Suggests: libfribidi-bin | bidiv, phantomjs Homepage: https://ytdl-org.github.io/youtube-dl/ Priority: optional Section: web Filename: pool/main/y/youtube-dl/youtube-dl_2021.12.17-1~nd110+1_all.deb Size: 1128692 SHA256: 75859d2f34a475fc0f199cd6d2b73e18c29cda44406530964890dcb790008eca SHA1: 09f85f2abc32eb5e9c2ccd6bfd1354ea332b6489 MD5sum: 6d04814be91bd9f85a7d3793ff2a2fb3 Description: downloader of videos from YouTube and other sites youtube-dl is a small command-line program to download videos from YouTube.com and other sites that don't provide direct links to the videos served. . youtube-dl allows the user, among other things, to choose a specific video quality to download (if available) or let the program automatically determine the best (or worst) quality video to grab. It supports downloading entire playlists and all videos from a given user. . Currently supported sites (or features of sites) are: . 1tv, 20min, 220.ro, 23video, 24video, 3qsdn, 3sat, 4tube, 56.com, 5min, 6play, 7plus, 8tracks, 91porn, 9c9media, 9gag, 9now.com.au, abc.net.au, abc.net.au:iview, abcnews, abcnews:video, abcotvs, abcotvs:clips, AcademicEarth:Course, acast, acast:channel, ADN, AdobeConnect, adobetv, adobetv:channel, adobetv:embed, adobetv:show, adobetv:video, AdultSwim, aenetworks, aenetworks:collection, aenetworks:show, afreecatv, AirMozilla, AliExpressLive, AlJazeera, Allocine, AlphaPorno, Amara, AMCNetworks, AmericasTestKitchen, AmericasTestKitchenSeason, anderetijden, AnimeOnDemand, Anvato, aol.com, APA, Aparat, AppleConnect, AppleDaily, ApplePodcasts, appletrailers, appletrailers:section, archive.org, ArcPublishing, ARD, ARD:mediathek, ARDBetaMediathek, Arkena, arte.sky.it, ArteTV, ArteTVEmbed, ArteTVPlaylist, AsianCrush, AsianCrushPlaylist, AtresPlayer, ATTTechChannel, ATVAt, AudiMedia, AudioBoom, audiomack, audiomack:album, AWAAN, awaan:live, awaan:season, awaan:video, AZMedien, BaiduVideo, Bandcamp, Bandcamp:album, Bandcamp:weekly, bangumi.bilibili.com, bbc, bbc.co.uk, bbc.co.uk:article, bbc.co.uk:iplayer:playlist, bbc.co.uk:playlist, BBVTV, Beatport, Beeg, BehindKink, Bellator, BellMedia, Bet, bfi:player, bfmtv, bfmtv:article, bfmtv:live, BibelTV, Bigflix, Bild, BiliBili, BilibiliAudio, BilibiliAudioAlbum, BiliBiliPlayer, BioBioChileTV, Biography, BIQLE, BitChute, BitChuteChannel, BleacherReport, BleacherReportCMS, blinkx, Bloomberg, BokeCC, BongaCams, BostonGlobe, Box, Bpb, BR, BravoTV, Break, brightcove:legacy, brightcove:new, BRMediathek, bt:article, bt:vestlendingen, BusinessInsider, BuzzFeed, BYUtv, Camdemy, CamdemyFolder, CamModels, CamTube, CamWithHer, canalc2.tv, Canalplus, Canvas, CanvasEen, CarambaTV, CarambaTVPage, CartoonNetwork, cbc.ca, cbc.ca:olympics, cbc.ca:player, cbc.ca:watch, cbc.ca:watch:video, CBS, CBSInteractive, CBSLocal, CBSLocalArticle, cbsnews, cbsnews:embed, cbsnews:livevideo, CBSSports, CCMA, CCTV, CDA, CeskaTelevize, CeskaTelevizePorady, channel9, CharlieRose, Chaturbate, Chilloutzone, chirbit, chirbit:profile, cielotv.it, Cinchcast, Cinemax, CiscoLiveSearch, CiscoLiveSession, CJSW, cliphunter, Clippit, ClipRs, Clipsyndicate, CloserToTruth, CloudflareStream, Cloudy, Clubic, Clyp, cmt.com, CNBC, CNBCVideo, CNN, CNNArticle, CNNBlogs, ComedyCentral, ComedyCentralTV, CommonMistakes, CondeNast, CONtv, Corus, Coub, Cracked, Crackle, CrooksAndLiars, crunchyroll, crunchyroll:playlist, CSpan, CtsNews, CTV, CTVNews, cu.ntv.co.jp, Culturebox, CultureUnplugged, curiositystream, curiositystream:collection, CWTV, DailyMail, dailymotion, dailymotion:playlist, dailymotion:user, daum.net, daum.net:clip, daum.net:playlist, daum.net:user, DBTV, DctpTv, DeezerPlaylist, defense.gouv.fr, democracynow, DHM, Digg, DigitallySpeaking, Digiteka, Discovery, DiscoveryGo, DiscoveryGoPlaylist, DiscoveryNetworksDe, DiscoveryVR, Disney, dlive:stream, dlive:vod, Dotsub, DouyuShow, DouyuTV, DPlay, DRBonanza, Dropbox, DrTuber, drtv, drtv:live, DTube, Dumpert, dvtv, dw, dw:article, EaglePlatform, EbaumsWorld, EchoMsk, egghead:course, egghead:lesson, ehftv, eHow, EinsUndEinsTV, Einthusan, eitb.tv, EllenTube, EllenTubePlaylist, EllenTubeVideo, ElPais, Embedly, EMPFlix, Engadget, Eporner, EroProfile, Escapist, ESPN, ESPNArticle, EsriVideo, Europa, EWETV, ExpoTV, Expressen, ExtremeTube, EyedoTV, facebook, FacebookPluginsVideo, faz.net, fc2, fc2:embed, Fczenit, filmon, filmon:channel, Filmweb, FiveThirtyEight, FiveTV, Flickr, Folketinget, FootyRoom, Formula1, FOX, FOX9, FOX9News, Foxgay, foxnews, foxnews:article, FoxSports, france2.fr:generation-what, FranceCulture, FranceInter, FranceTV, FranceTVEmbed, francetvinfo.fr, FranceTVJeunesse, FranceTVSite, Freesound, freespeech.org, FreshLive, FrontendMasters, FrontendMastersCourse, FrontendMastersLesson, FujiTVFODPlus7, Funimation, Funk, Fusion, Fux, Gaia, GameInformer, GameSpot, GameStar, Gaskrank, Gazeta, GDCVault, generic, Gfycat, GiantBomb, Giga, GlattvisionTV, Glide, Globo, GloboArticle, Go, GodTube, Golem, google:podcasts, google:podcasts:feed, GoogleDrive, Goshgay, GPUTechConf, Groupon, hbo, HearThisAt, Heise, HellPorno, Helsinki, HentaiStigma, hetklokhuis, hgtv.com:show, HiDive, HistoricFilms, history:player, history:topic, hitbox, hitbox:live, HitRecord, hketv, HornBunny, HotNewHipHop, hotstar, hotstar:playlist, Howcast, HowStuffWorks, HRTi, HRTiPlaylist, Huajiao, HuffPost, Hungama, HungamaSong, Hypem, ign.com, IGNArticle, IGNVideo, IHeartRadio, iheartradio:podcast, imdb, imdb:list, Imgur, imgur:album, imgur:gallery, Ina, Inc, IndavideoEmbed, InfoQ, Instagram, instagram:tag, instagram:user, Internazionale, InternetVideoArchive, IPrima, iqiyi, Ir90Tv, ITTF, ITV, ITVBTCC, ivi, ivi:compilation, ivideon, Iwara, Izlesene, Jamendo, JamendoAlbum, JeuxVideo, Joj, Jove, JWPlatform, Kakao, Kaltura, Kankan, Karaoketv, KarriereVideos, Katsomo, KeezMovies, Ketnet, khanacademy, khanacademy:unit, KickStarter, KinjaEmbed, KinoPoisk, KonserthusetPlay, KrasView, Ku6, KUSI, kuwo:album, kuwo:category, kuwo:chart, kuwo:mv, kuwo:singer, kuwo:song, la7.it, laola1tv, laola1tv:embed, lbry, lbry:channel, LCI, Lcp, LcpPlay, Le, Lecture2Go, Lecturio, LecturioCourse, LecturioDeCourse, LEGO, Lemonde, Lenta, LePlaylist, LetvCloud, Libsyn, life, life:embed, limelight, limelight:channel, limelight:channel_list, LineTV, linkedin:learning, linkedin:learning:course, LinuxAcademy, LiTV, LiveJournal, LiveLeak, LiveLeakEmbed, livestream, livestream:original, livestream:shortener, LnkGo, loc, LocalNews8, LoveHomePorn, lrt.lt, lynda, lynda:course, m6, mailru, mailru:music, mailru:music:search, MallTV, mangomolo:live, mangomolo:video, ManyVids, Markiza, MarkizaPage, massengeschmack.tv, MatchTV, MDR, MedalTV, media.ccc.de, media.ccc.de:lists, Medialaan, Mediaset, Mediasite, MediasiteCatalog, MediasiteNamedCatalog, Medici, megaphone.fm, Meipai, MelonVOD, META, metacafe, Metacritic, mewatch, Mgoon, MGTV, MiaoPai, minds, minds:channel, minds:group, MinistryGrid, Minoto, miomio.tv, MiTele, mixcloud, mixcloud:playlist, mixcloud:user, MLB, Mms, Mnet, MNetTV, MoeVideo, Mofosex, MofosexEmbed, Mojvideo, Morningstar, Motherless, MotherlessGroup, Motorsport, MovieClips, MovieFap, Moviezine, MovingImage, MSN, mtg, mtv, mtv.de, mtv:video, mtvjapan, mtvservices:embedded, MTVUutisetArticle, MuenchenTV, mva, mva:course, Mwave, MwaveMeetGreet, MyChannels, MySpace, MySpace:album, MySpass, Myvi, MyVidster, MyviEmbed, MyVisionTV, n-tv.de, natgeo:video, NationalGeographicTV, Naver, NBA, nba:watch, nba:watch:collection, NBAChannel, NBAEmbed, NBAWatchEmbed, NBC, NBCNews, nbcolympics, nbcolympics:stream, NBCSports, NBCSportsStream, NBCSportsVPlayer, ndr, ndr:embed, ndr:embed:base, NDTV, NerdCubedFeed, netease:album, netease:djradio, netease:mv, netease:playlist, netease:program, netease:singer, netease:song, NetPlus, Netzkino, Newgrounds, NewgroundsPlaylist, Newstube, NextMedia, NextMediaActionNews, NextTV, Nexx, NexxEmbed, nfl.com (CURRENTLY BROKEN), nfl.com:article (CURRENTLY BROKEN), NhkVod, NhkVodProgram, nhl.com, nick.com, nick.de, nickelodeon:br, nickelodeonru, nicknight, niconico, NiconicoPlaylist, Nintendo, njoy, njoy:embed, NJPWWorld, NobelPrize, NonkTube, Noovo, Normalboots, NosVideo, Nova, NovaEmbed, nowness, nowness:playlist, nowness:series, Noz, npo, npo.nl:live, npo.nl:radio, npo.nl:radio:fragment, Npr, NRK, NRKPlaylist, NRKRadioPodkast, NRKSkole, NRKTV, NRKTVDirekte, NRKTVEpisode, NRKTVEpisodes, NRKTVSeason, NRKTVSeries, NRLTV, ntv.ru, Nuvid, NYTimes, NYTimesArticle, NYTimesCooking, NZZ, ocw.mit.edu, OdaTV, Odnoklassniki, OktoberfestTV, OnDemandKorea, onet.pl, onet.tv, onet.tv:channel, OnetMVP, OnionStudios, Ooyala, OoyalaExternal, OraTV, orf:burgenland, orf:fm4, orf:fm4:story, orf:iptv, orf:kaernten, orf:noe, orf:oberoesterreich, orf:oe1, orf:oe3, orf:salzburg, orf:steiermark, orf:tirol, orf:tvthek, orf:vorarlberg, orf:wien, OsnatelTV, OutsideTV, PacktPub, PacktPubCourse, pandora.tv, ParamountNetwork, parliamentlive.tv, Patreon, pbs, PearVideo, PeerTube, People, PerformGroup, periscope, periscope:user, PhilharmonieDeParis, phoenix.de, Photobucket, Picarto, PicartoVod, Piksel, Pinkbike, Pinterest, PinterestCollection, Pladform, Platzi, PlatziCourse, play.fm, player.sky.it, PlayPlusTV, PlaysTV, Playtvak, Playvid, Playwire, pluralsight, pluralsight:course, podomatic, Pokemon, PolskieRadio, PolskieRadioCategory, Popcorntimes, PopcornTV, PornCom, PornerBros, PornHd, PornHub, PornHubPagedVideoList, PornHubUser, PornHubUserVideosUpload, Pornotube, PornoVoisines, PornoXO, PornTube, PressTV, prosiebensat1, puhutv, puhutv:serie, Puls4, Pyvideo, qqmusic, qqmusic:album, qqmusic:playlist, qqmusic:singer, qqmusic:toplist, QuantumTV, Qub, Quickline, QuicklineLive, R7, R7Article, radio.de, radiobremen, radiocanada, radiocanada:audiovideo, radiofrance, RadioJavan, Rai, RaiPlay, RaiPlayLive, RaiPlayPlaylist, RayWenderlich, RayWenderlichCourse, RBMARadio, RDS, RedBull, RedBullEmbed, RedBullTV, RedBullTVRrnContent, Reddit, RedditR, RedTube, RegioTV, RENTV, RENTVArticle, Restudy, Reuters, ReverbNation, RICE, RMCDecouverte, RockstarGames, RoosterTeeth, RottenTomatoes, Roxwel, Rozhlas, RTBF, rte, rte:radio, rtl.nl, rtl2, rtl2:you, rtl2:you:series, Rtmp, RTP, RTS, rtve.es:alacarta, rtve.es:infantil, rtve.es:live, rtve.es:television, RTVNH, RTVS, RUHD, RumbleEmbed, rutube, rutube:channel, rutube:embed, rutube:movie, rutube:person, rutube:playlist, RUTV, Ruutu, Ruv, safari, safari:api, safari:course, SAKTV, SaltTV, Sapo, savefrom.net, SBS, schooltv, screen.yahoo:search, Screencast, ScreencastOMatic, ScrippsNetworks, scrippsnetworks:watch, SCTE, SCTECourse, Seeker, SenateISVP, SendtoNews, Servus, Sexu, SeznamZpravy, SeznamZpravyArticle, Shahid, ShahidShow, Shared, ShowRoomLive, Sina, sky.it, sky:news, sky:sports, sky:sports:news, skyacademy.it, SkylineWebcams, skynewsarabia:article, skynewsarabia:video, Slideshare, SlidesLive, Slutload, Snotr, Sohu, SonyLIV, soundcloud, soundcloud:playlist, soundcloud:search, soundcloud:set, soundcloud:trackstation, soundcloud:user, SoundcloudEmbed, soundgasm, soundgasm:profile, southpark.cc.com, southpark.cc.com:español, southpark.de, southpark.nl, southparkstudios.dk, SpankBang, SpankBangPlaylist, Spankwire, Spiegel, sport.francetvinfo.fr, Sport5, SportBox, SportDeutschland, spotify, spotify:show, Spreaker, SpreakerPage, SpreakerShow, SpreakerShowPage, SpringboardPlatform, Sprout, sr:mediathek, SRGSSR, SRGSSRPlay, stanfordoc, Steam, Stitcher, StitcherShow, Streamable, streamcloud.eu, StreamCZ, StreetVoice, StretchInternet, stv:player, SunPorno, sverigesradio:episode, sverigesradio:publication, SVT, SVTPage, SVTPlay, SVTSeries, SWRMediathek, Syfy, SztvHu, t-online.de, Tagesschau, tagesschau:player, Tass, TBS, TDSLifeway, Teachable, TeachableCourse, teachertube, teachertube:user:collection, TeachingChannel, Teamcoco, TeamTreeHouse, TechTalks, techtv.mit.edu, ted, Tele13, Tele5, TeleBruxelles, Telecinco, Telegraaf, TeleMB, TeleQuebec, TeleQuebecEmission, TeleQuebecLive, TeleQuebecSquat, TeleQuebecVideo, TeleTask, Telewebion, TennisTV, TenPlay, TestURL, TF1, TFO, TheIntercept, ThePlatform, ThePlatformFeed, TheScene, TheStar, TheSun, TheWeatherChannel, ThisAmericanLife, ThisAV, ThisOldHouse, TikTok, TikTokUser (CURRENTLY BROKEN), tinypic, TMZ, TMZArticle, TNAFlix, TNAFlixNetworkEmbed, toggle, ToonGoggles, tou.tv, Toypics, ToypicsUser, TrailerAddict (CURRENTLY BROKEN), Trilulilu, Trovo, TrovoVod, TruNews, TruTV, Tube8, TubiTv, Tumblr, tunein:clip, tunein:program, tunein:shortener, tunein:station, tunein:topic, TunePk, Turbo, tv.dfb.de, TV2, tv2.hu, TV2Article, TV2DK, TV2DKBornholmPlay, TV4, TV5MondePlus, tv5unis, tv5unis:video, tv8.it, TVA, TVANouvelles, TVANouvellesArticle, TVC, TVCArticle, TVer, tvigle, tvland.com, TVN24, TVNet, TVNoe, TVNow, TVNowAnnual, TVNowNew, TVNowSeason, TVNowShow, tvp, tvp:embed, tvp:series, TVPlayer, TVPlayHome, Tweakers, TwitCasting, twitch:clips, twitch:stream, twitch:vod, TwitchCollection, TwitchVideos, TwitchVideosClips, TwitchVideosCollections, twitter, twitter:amplify, twitter:broadcast, twitter:card, udemy, udemy:course, UDNEmbed, UFCArabia, UFCTV, UKTVPlay, umg:de, UnicodeBOM, Unistra, Unity, uol.com.br, uplynk, uplynk:preplay, Urort, URPlay, USANetwork, USAToday, ustream, ustream:channel, ustudio, ustudio:embed, Varzesh3, Vbox7, VeeHD, Veoh, Vesti, Vevo, VevoPlaylist, VGTV, vh1.com, vhx:embed, Viafree, vice, vice:article, vice:show, Vidbit, Viddler, Videa, video.google:search, video.sky.it, video.sky.it:live, VideoDetective, videofy.me, videomore, videomore:season, videomore:video, VideoPress, Vidio, VidLii, vidme, vidme:user, vidme:user:likes, vier, vier:videos, viewlift, viewlift:embed, Viidea, viki, viki:channel, vimeo, vimeo:album, vimeo:channel, vimeo:group, vimeo:likes, vimeo:ondemand, vimeo:review, vimeo:user, vimeo:watchlater, Vimple, Vine, vine:user, Viqeo, Viu, viu:ott, viu:playlist, Vivo, vk, vk:uservideos, vk:wallpost, vlive, vlive:channel, vlive:post, Vodlocker, VODPl, VODPlatform, VoiceRepublic, Voot, VoxMedia, VoxMediaVolume, vpro, Vrak, VRT, VrtNU, vrv, vrv:series, VShare, VTM, VTXTV, vube, VuClip, VVVVID, VVVVIDShow, VyboryMos, Vzaar, Wakanim, Walla, WalyTV, washingtonpost, washingtonpost:article, wat.tv, WatchBox, WatchIndianPorn, WDR, wdr:mobile, WDRElefant, WDRPage, Webcaster, WebcasterFeed, WebOfStories, WebOfStoriesPlaylist, Weibo, WeiboMobile, WeiqiTV, Wistia, WistiaPlaylist, wnl, WorldStarHipHop, WSJ, WSJArticle, WWE, XBef, XboxClips, XFileShare, XHamster, XHamsterEmbed, XHamsterUser, xiami:album, xiami:artist, xiami:collection, xiami:song, ximalaya, ximalaya:album, XMinus, XNXX, Xstream, XTube, XTubeUser, Xuite, XVideos, XXXYMovies, Yahoo, yahoo:gyao, yahoo:gyao:player, yahoo:japannews, YandexDisk, yandexmusic:album, yandexmusic:artist:albums, yandexmusic:artist:tracks, yandexmusic:playlist, yandexmusic:track, YandexVideo, YapFiles, YesJapan, yinyuetai:video, Ynet, YouJizz, youku, youku:show, YouNowChannel, YouNowLive, YouNowMoment, YouPorn, YourPorn, YourUpload, youtube, youtube:favorites, youtube:history, youtube:playlist, youtube:recommended, youtube:search, youtube:search:date, youtube:subscriptions, youtube:tab, youtube:truncated_id, youtube:truncated_url, youtube:watchlater, YoutubeYtBe, YoutubeYtUser, Zapiks, Zattoo, ZattooLive, ZDF, ZDFChannel, zingmp3, Zype