Package: afni Version: 16.2.07~dfsg.1-2~nd15.10+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 45988 Depends: neurodebian-popularity-contest, afni-common (= 16.2.07~dfsg.1-2~nd15.10+1), tcsh, gifsicle, libjpeg-progs, freeglut3, libc6 (>= 2.15), libexpat1 (>= 2.0.1), libf2c2, libgiftiio0, libgl1-mesa-glx | libgl1, libglib2.0-0 (>= 2.12.0), libglu1-mesa | libglu1, libglw1-mesa | libglw1, libgomp1 (>= 4.9), libgsl0ldbl (>= 1.9), libgts-0.7-5 (>= 0.7.6), libice6 (>= 1:1.0.0), libnetcdf7 (>= 3.6.1), libnifti2, libsm6, libvolpack1 (>= 1.0b3), libx11-6, libxext6, libxm4 (>= 2.3.4), libxmhtml1.1 (>= 1.1.9), libxmu6, libxt6, zlib1g (>= 1:1.1.4) Recommends: nifti-bin, bzip2, ffmpeg, netpbm, qhull-bin Suggests: r-base Homepage: http://afni.nimh.nih.gov Priority: extra Section: contrib/science Filename: pool/contrib/a/afni/afni_16.2.07~dfsg.1-2~nd15.10+1_amd64.deb Size: 12785170 SHA256: dad0c82d39a69aebd40393c74f53a6f8c54513d9f160d1e7d248eb5d0c7889ce SHA1: 4ca2e1dc8691f511088747afb6afab471d523545 MD5sum: cf5fe953d34c6c95b066f8e76e9c5833 Description: toolkit for analyzing and visualizing functional MRI data AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . In addition to its own format, AFNI understands the NIfTI format and is therefore integrates easily with FSL and FreeSurfer. Package: afni-common Source: afni Version: 16.2.07~dfsg.1-2~nd15.10+1 Architecture: all Maintainer: NeuroDebian Maintainers Installed-Size: 14914 Depends: neurodebian-popularity-contest, python, tcsh Recommends: python-mdp, python-nibabel, afni-atlases Homepage: http://afni.nimh.nih.gov Priority: extra Section: contrib/science Filename: pool/contrib/a/afni/afni-common_16.2.07~dfsg.1-2~nd15.10+1_all.deb Size: 9361846 SHA256: ee9d813c83760a9d2612adce820317cca78900a2b1534925d1dcd31a0e684ddf SHA1: 88ab11d9ae1d7bb62e2aa1a3e43c782cc963ddb1 MD5sum: 36081c0fa95636f57dc7a40249118c02 Description: miscellaneous scripts and data files for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provides the required architecture independent parts of AFNI. Package: afni-dbg Source: afni Version: 16.2.07~dfsg.1-2~nd15.10+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 39195 Depends: neurodebian-popularity-contest, afni (= 16.2.07~dfsg.1-2~nd15.10+1) Homepage: http://afni.nimh.nih.gov Priority: extra Section: contrib/debug Filename: pool/contrib/a/afni/afni-dbg_16.2.07~dfsg.1-2~nd15.10+1_amd64.deb Size: 35168796 SHA256: e6b28989be2ee83d88c5b5162a821c0ec1824dc0bdae35fba0cca0d731da1e8e SHA1: 7a3bb193593ac089637f07c50825cffe29cb3963 MD5sum: 525eeea4567a8610582dc5d3dbfc8e05 Description: debug symbols for AFNI AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provides debug symbols which could be useful to troubleshoot and report problems with AFNI. Package: afni-dev Source: afni Version: 16.2.07~dfsg.1-2~nd15.10+1 Architecture: amd64 Maintainer: NeuroDebian Maintainers Installed-Size: 24103 Depends: neurodebian-popularity-contest Homepage: http://afni.nimh.nih.gov Priority: extra Section: contrib/science Filename: pool/contrib/a/afni/afni-dev_16.2.07~dfsg.1-2~nd15.10+1_amd64.deb Size: 4192302 SHA256: 2578d0b1bff5e9259af1bf03fc9e97e27f8315f55fcbcc896910b551c7817ea1 SHA1: 00460d5ca8b34efa6b01d60f0723357676409381 MD5sum: e747594e6bba0f5da00d8e1c6ac63d13 Description: header and static libraries for AFNI plugin development AFNI is an environment for processing and displaying functional MRI data. It provides a complete analysis toolchain, including 3D cortical surface models, and mapping of volumetric data (SUMA). . This package provides the necessary libraries and header files for AFNI plugin development. Package: fsl-5.0-complete Source: fslmeta Version: 5.0.7-3~ndall0 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 12 Depends: fsl-5.0-core (>= 5.0.7-3~ndall0~), fsl-atlases (>= 5.0~), fsl-possum-data (>= 5.0~), fsl-first-data (>= 5.0~) Recommends: fsl-5.0-wiki (>= 5.0.7-3~ndall0~), fsl-5.0-gpu (>= 5.0.7-3~ndall0~), fslview Suggests: fsleyes Homepage: http://www.fmrib.ox.ac.uk/fsl/ Priority: optional Section: contrib/science Filename: pool/contrib/f/fslmeta/fsl-5.0-complete_5.0.7-3~ndall0_all.deb Size: 4014 SHA256: d524bfba85f003dc1b013013927062869d310468a1723cce2f889cd999d0ce34 SHA1: daed795276f955a9c9b179fe1b43d845b47bb799 MD5sum: 22798de378c13c9de7b0f817fa5ac257 Description: metapackage for the entire FSL suite (tools and data) FSL is a comprehensive library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. The suite consists of various command line tools, as well as simple GUIs for its core analysis pipelines. Among others, FSL offers implementations of standard GLM analysis, white matter tractography, tissue segmentation, affine and non-linear co-registration, and independent component analysis. . Installing this meta package yields a complete FSL 5.0 installation, including all tools and data packages. Package: fsl-complete Source: fslmeta Version: 5.0.7-3~ndall0 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 12 Depends: fsl-5.0-complete, fsl-core Homepage: http://www.fmrib.ox.ac.uk/fsl/ Priority: optional Section: contrib/science Filename: pool/contrib/f/fslmeta/fsl-complete_5.0.7-3~ndall0_all.deb Size: 3954 SHA256: 3fc0882881b73b4868405876f3b31addd423672ccc5214e897e19c39c2978e39 SHA1: 21dcda16b2d7bccfc1898d55835f08715b747796 MD5sum: c4d1c94875389ab6b43c0d9e0189cd0a Description: metapackage for the entire FSL suite (tools and data) FSL is a comprehensive library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. The suite consists of various command line tools, as well as simple GUIs for its core analysis pipelines. Among others, FSL offers implementations of standard GLM analysis, white matter tractography, tissue segmentation, affine and non-linear co-registration, and independent component analysis. . Installing this meta package yields a complete installation of the latest FSL version, including all tools and data packages. Package: matlab-spm8 Source: spm8 Version: 8.5236~dfsg.1-1~nd12.10+1+nd13.04+1+nd13.10+1+nd14.04+1+nd14.10+1+nd15.04+1+nd15.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 1218 Depends: neurodebian-popularity-contest, matlab-support, spm8-common (= 8.5236~dfsg.1-1~nd12.10+1+nd13.04+1+nd13.10+1+nd14.04+1+nd14.10+1+nd15.04+1+nd15.10+1), make Provides: spm, spm8 Priority: extra Section: contrib/science Filename: pool/contrib/s/spm8/matlab-spm8_8.5236~dfsg.1-1~nd12.10+1+nd13.04+1+nd13.10+1+nd14.04+1+nd14.10+1+nd15.04+1+nd15.10+1_all.deb Size: 171410 SHA256: 77b860bdf949a6e32e22dd400283c77bdef772401600314d5de71939f54b8d95 SHA1: 51c43e8066aaf556a5810331a4e36d9b76039db5 MD5sum: 464e53fd39593c183b8a2a3cfe5983fc Description: analysis of brain imaging data sequences for Matlab Statistical Parametric Mapping (SPM) refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional brain imaging data. These ideas have been instantiated in software that is called SPM. It is designed for the analysis of fMRI, PET, SPECT, EEG and MEG data. . This package provides SPM to be used with Matlab. Note that this package depends on Matlab -- a commercial software that needs to be obtained and installed separately. Package: matlab-support Version: 0.0.21~nd15.04+1+nd15.10+1 Architecture: all Maintainer: NeuroDebian Team Installed-Size: 96 Depends: neurodebian-popularity-contest, debconf (>= 1.3.22) | cdebconf (>= 0.43), debconf (>= 0.5) | debconf-2.0, sudo Recommends: libstdc++6-4.4-dev | libstdc++-dev Suggests: lsb-core Conflicts: matlab (<= 0.0.14~) Replaces: matlab (<= 0.0.14~) Priority: optional Section: contrib/devel Filename: pool/contrib/m/matlab-support/matlab-support_0.0.21~nd15.04+1+nd15.10+1_all.deb Size: 31642 SHA256: ade8608f2d74a884840c773e3a4be73c775096662300c564cbc0550833d3e262 SHA1: 709ca55130ccc8ba430f9a10250af85ce2c669d4 MD5sum: 81767fd74b0436a0bd0c739084c0eb24 Description: distro integration for local MATLAB installations This package does not provide MATLAB. Instead, it configures an existing MATLAB installation to integrate more comfortably in a Debian installation. . Currently it provides /usr/bin/matlab through the alternatives system, offers to work around incompatibilities between the libraries bundled with MATLAB and system libraries, and provides a helper utility meant to be used by other packages to compile MEX extensions. . Install this if you would like your MATLAB installation to behave more like an ordinary Debian package. Other packages may depend on this one if they install MATLAB code, for example in order to compile MEX extensions. Package: pycharm-community-sloppy Version: 2019.3.3-1~ndall Architecture: amd64 Maintainer: Yaroslav Halchenko Installed-Size: 716865 Depends: python, openjdk-7-jre | java7-runtime Recommends: ipython Suggests: pep8, flake8, python-nose Provides: pycharm-community Homepage: https://www.jetbrains.com/pycharm Priority: optional Section: contrib/python Filename: pool/contrib/p/pycharm-community-sloppy/pycharm-community-sloppy_2019.3.3-1~ndall_amd64.deb Size: 297890076 SHA256: 1ee0179eec020656ad03e46d88b0ee7eda27b80419dc100c6d9d6ee592d03081 SHA1: 9096a59d29eb05af2f35840286ab2b3c33e4d3d8 MD5sum: 84ffbb693622b5e85621522198689d57 Description: PyCharm IDE (sloppy packaging) PyCharm provides a heavily featured IDE for developing in Python. It features: syntax highlighting, formatter, code navigation and refactoring, built-in debugger, and more. . This package provides a mere container and installer for distributed upstream tarballs. It by no means qualifies as "proper" Debian package and there is no support for it provided by Debian project. Use at your own risk. Package: pycharm-community-sloppy-dbgsym Source: pycharm-community-sloppy Version: 2017.2.3-1~ndall Auto-Built-Package: debug-symbols Architecture: amd64 Maintainer: Yaroslav Halchenko Installed-Size: 12269 Depends: pycharm-community-sloppy (= 2017.2.3-1~ndall) Homepage: https://www.jetbrains.com/pycharm Priority: extra Section: contrib/debug Filename: pool/contrib/p/pycharm-community-sloppy/pycharm-community-sloppy-dbgsym_2017.2.3-1~ndall_amd64.deb Size: 2260976 SHA256: fe6272ee28f1750eaeb879ebacceaa591f9a9a3b6dd9bb8ef508f15ebfc9e243 SHA1: e99494c69103421b78245d0473811a9ce91d680a MD5sum: 8a88424e9b1a64b4397bb915e57ec459 Description: Debug symbols for pycharm-community-sloppy Build-Ids: 01f486724a2b2c0731d3da03baf9620d7fa3e0b6 0214b963c1ca65c49fc5e7197292a05cb2d03fa4 0762f1f314c22961989632af193316f78f03f66f 0a89f378bcee7de2dace8a6eabfe0e9a190c5ab1 0b8761fccafa5fa5a14d26359dece4d467b94bc0 0cd153f8fa9dc47b285eda77d74bf2dbe7dc62b7 11f96a903bda6dcf8db2c632076d984f4b34cb0e 1868e2e354a7f08e8404a8baa23002ebe14234fb 214d0487a9a605743ea577af5aff55942db25d71 22b0759f10d55c7e26d29a14492e11f5ef18ef34 2b2e4ee95aec65cff91b7d71af3fdde6c0b9a7ff 2f5e445283dae7d61743bc5e08531432627d9cba 349e9b8069d44bea923c4c7f728e24443501a05d 3e4e1efaa82f453b2c198d01602ef1e5d913a00a 413294a4063d9254fc53da95b63a3f6476773af6 4176fa9d5a2d851af37fbada1638f26a9ee0aada 481a45241fc30dd6a4409d6d6034579e2bfd98a8 4b7e1c8799dbe9cbbc668dfb273227f09629485d 4efd3ecaf46d5de74636e1e3f04ea1121bb4f194 5e29b01c40ace080f44ca6810fb73b9b4cedc970 67ae7e52f34fcb0621ba3937e4288b314676bae2 6c7f9241b0942896ff8898d5cc34ff8dc84f0235 6ccc063fd5a069ddf905d21b1a3235a96e43866d 6d87d1dfddf00bb71c3b87b80ee3cea5b0c8832b 74d233b22558825bcfe5c232e3b54b97e3f22657 7586b16c56f077f6e51277be77831ba8a15df645 77b472a09840bdb1d48d2b7ba525fc9a8bcffead 7b74d314f7fd079300444886a6d9347855580111 7f208a59f0556e8de55e90787256d6ed60431f74 80471f36ec0145077b80612be3c63d8e3e60a40b 852983c39838b02a69a49fa9142a8b68128e176e 8593af639077833cc0b722469557b92cd51d78dd 8593af639077833cc0b722469557b92cd51d78dd 92b398e038962a1bffb3e83657691d10ba65482c a295e70aa5b17d0eed35800188bf9f4b459db1f7 a61c13f5fc9e7ea04615bad7a22d95354cce1b08 a7612d336a525ef17252025ee1f82dfdabf5957b adc8deece73f9a55c89c2d2b8d8b9aa3271a029a b346cde7d3a5238c621c0c24d310a5970ec1a7a1 b83f109a6b80bd56120e4bf8f8b7f5d1eb7b1bc8 b8528d5040a49f5ccac22f642e20d28d26eb895d b98f3151778ed1357acb2da19ce892a9b55f9a8b bfc94b82bd5a186078d8ccf34998fd5834281b29 c4737f3a7226086ee8af694720fbcbcf459d6a1e c8659e197e3a06f0e13288c075d9e1eee4e43653 c8f69f4ff062e25fb7a46d705ff8ca0155323838 cb77f1553fefcecb1721287e3950d99532fafb50 cb8cc6cae9c7d1f5f03d0f562583f11b73e7c45e d09d6fc836ffa873a08be897a9501a2c0af644e7 d25029fa5673d86077ee441a6430c0d4fadfebf8 d4bc9e60590fdeedb3ef846af9bfdfb7765977c2 d721e8885a5107fba7d74dba804f7706bee32e3d dc21e0cac157d5e8ffd91e3e0ccc9cd0c4b4da24 e6a8633972c92254569a514de664aafa48f65ef7 e97770c27f0853ca3aa160eba8d4809c2584369e ea1e5903f64fa39ad51276402909802ccdeaee45 ed039021f988cdc7377cb4f65a5df1275813680b ee52017c1c71b322e152cb3c68e5036836a79fe7 f5a7d17a83ba3da2b17092e6538077174c2fbd4b f7d194e28877051dac2b1c7404322508c1324d60 fbbbbeed44b9c1f1cb1a26614c3c3280f3082213 fde7feafbf78b3be34f4d7589a5ace94a2416733